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Abstract

This paper contributes to expand the empirical evidence on adaptation to climate change through the

adoption of air conditioning machines and the use of electricity for a sample of households living across eight

different OECD countries outside the United States (US). Our identification strategy relies on the cross-

country and cross-household variation, as we combine a geocoded household survey on energy behaviours

with high-resolution climate data to compute heating and cooling degree days. The empirical strategy to

assess the impact of air conditionig on electricity expenditure makes use of a Control Function approach in

order to address the potential endogeneity of air conditioning. We show that the adoption of air conditioning

increases significantly the expenditure on electricity, absorbing the effect of global warming captured by

the long-term average cooling degree days which is a key variable in explaining the adoption decision.
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1 Introduction

Climate change is already increasing the risk of conditions associated with more frequent mortality

and morbidity events not only in tropical regions, but also in mid-latitude temperate areas where more

warming will be experienced compared to higher latitudes (Mora et al. 2017). Various forms of social

adaptation1 seem to have contributed to attenuate the mortality risk associated with heat during the

last decades, with significant evidence in the United States (US), Japan, Spain, and Canada (Gaspar-

rini et al. 2015). Yet, the specific role of the drivers of such observed changes, such as acclimatization,

infrastructural changes, air conditioning, access to health care, remains to be identified. The empiri-

cal evidence mostly based on US data suggests that space cooling has been of critical importance at

reducing mortality (Barreca et al. 2016, Deschênes and Greenstone 2011). Studies covering different

countries highlight how air conditioning has been key to sustain labour productivity in hot countries

located in tropical and sub-tropical regions where climatic conditions are already harsh (Niemelä et

al. 2002, Hsiang 2010).

While the topic of the health benefits of social adaptation such as air conditioning is still at an infancy

stage and mostly limited to the US (see Gasparrini et al. 2015 for a review), equally underinvestigated

is how air conditioning affects energy demand and expenditure (Auffhammer and Mansur 2014). The

environmental and economic implications of climate-driven energy use is also of special concern because

it relates to the broader question of how adaptation might lead to higher emissions (Isaac and van

Vuuren 2009) and exacerbate energy poverty (Mastrucci et al. 2019).

A broad literature has investigated the direct impact of temperature variables on energy demand (in-

tensive margin) using reduced-form equations not explicitly accounting for the role of air conditioning.

Most of the studies exploit panel data to estimate short-run and long-run elasticities of energy demand

to climatic variables for Europe (Eskeland and Mideska 2010, Wenz et al. 2017), the US (Deschênes

and Greenstone 2011, Auffhammer et al. 2017), and multiple countries (De Cian and Sue Wing, 2017).

Studies using cross-sectional data (Morrison and Mendelsohn 1999, Mendelsohn 2001, Mansur et al.

2008) and time-series data (Franco and Sanstad 2008, Considine 2000) also exist, mostly for the US.

Another set of studies focusing on price and income elasticities of residential energy demand might

(Alberini et al. 2011) or might not (Krishnamurthy and Kriström, 2015) include climatic variables as

a control.

Fewer studies have analyzed the impact of climate or weather conditions on the air conditioning (hence-

forth AC) adoption decision (extensive margin). They are mostly confined to the US, which accounts

for about 40% of the global installed cooling capacity, and where already in the 1980s half households

had AC at home (Sailor and Pavlova 2003, Biddle 2008, Rapson 2014), providing researchers with a

1The Intergovernmental Panel on Climate Change, IPCC, defines adaptation as adjustment in natural or human

systems in response to actual or expected climatic stimuli or their effects, which moderate harm or exploits beneficial

opportunities, IPCC 2007.
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good historical record of data. Only a limited number of studies has examined the implications of AC

ownership on either electricity demand conditional on the use of AC. The energy demand equation

is estimated only for those households having AC (Davis & Gertler, 2015) or using a two-stage pro-

cedure as described in Dubin and McFadden (1984), (e.g. Asaadoorian et al. 2008). Earlier studies

(Branch 1993) have included the AC ownership dummy in the demand equation withouth addressing

the endogeneity that arises from the relationship between the two decisions of adopting and using AC

(Dubin and McFadden 1984). One exception is Barreca et al. (2016). They apply a Control Function

(CF) approach to address the endogeneity of AC using a function of climate indicators as instrument.

They show that AC shifts electricity demand to the right, and that households with AC consume on

average 11% more electricity.

This paper contributes to advance the empirical understanding of the demand for air conditioning, the

intensity of its use, and the implications for residential electricity expenditure across multiple countries

located outside the US. By combining geocoded cross-sectional data on households in eight different

OECD countries (Australia, Canada, France, Japan, Netherlands, Spain, Sweden, Switzerland) with

climatic data, we are able to exploit the great heterogeneity in socio-economic and climatic conditions

to disentangle the role of different determinants in the adoption and use decision. We identify the

effect of climate and air conditioning from cross-sectional variation across a sample of 3711 geocoded

households located in different OECD countries interviewed in 2011 (Kriström 2014, OECD 2014).

Since household demand for air conditioning and electricity share unobservable common determinants

(Dubin and McFadden 1984) difficult to measure in a cross sectional setting, we use a Control Function

(CF) approach (Wooldrige, 2015) to address the endogeneity of AC, with past AC imports as exclusion

restriction.

Our results show that AC is endogenous, and that it significantly increases the electricity expenditure

bill. Households with AC spend on average 10% more on electricity a year. We also show that the

main effect of climate on electricity expenditure is modulated by the AC utilization, and that once AC

is correctly specified in the electricity expenditure equation, long-term climate conditions influence

electricity expenditure only indirectly, through the effect on air conditioner acquisition. For the set of

OECD countries analyzed, we show that changes in climatic conditions, by pushing up AC adoption,

will also be of great importance as driver of electricity expenditure, with an impact that is comparable

to that of per capita income and the number of other electricity-using appliances. The actual impact

will depend on the interaction between exposure to warm days and sensitivity, which varies with the

way climatic conditions are computed. We conclude discussing how climate change, by increasing the

average number of warm days and by deepening AC penetration for a given level of income, could

increase energy poverty even in industrialized countries.

The remainder of the paper is organized as follows. Section 2 describes some recent trends in AC use

and climatic variables, motivating the regional focus of this paper. Section 3 provides the theoretical
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and empirical framework. Section 4 describes the datasets used. Section 5 discusses the empirical

results and Section 6 concludes with a discussion of the broader implications of our findings.

2 Air Conditioning trends in OECD countries

Space cooling is a key energy service of increasing importance in a changing climate. Demand has been

growing rapidly, with a threefold expansion since 1990s (IEA, 2018). A key concern are the emerging

trends of developing countries, where improved income conditions, rapid urbanization, and warming

from a baseline temperature and humidity level that is already of concern, are expected to dramatically

increase AC penetration (McNeil and Letschert 2011). While AC has first spread in the US as a way to

ensure thermal comfort in the afforable and attractive booming houses during the 1980s (Biddle 2008),

access to cooling is now becoming an equity issue, as it can worsen the energy poverty gap (Mastrucci

et al. 2019). Yet, climate change is posing a greater health risk related to threshold temperature and

humidity levels also at mid-latitudes, where lethal heat events are increasingly being reported (Mora et

al. 2017). Well-known examples are the major events in Chicago (1995), Paris (2003), Moscow (2010),

though many other exist.2 Historical trends in Cooling Degree Days (henceforth CDDs), defined as the

cumulative number of days over a year exceeding a temperature thresholds of typically 18◦C3 exhibit

a gentle growing trend also in subtropical or temperate countries. Figure 1 shows the time series of

CDDs computed using daily mean surface temperature from a reanalysis dataset Global Land Data

Assimilation System (GLDAS, Rodell et al. 2004), for the eight OECD countries under investigation.

Notwithstanding the interannual varaibility, the positive trend is evident in all countries.

2See https://maps.esri.com/globalriskofdeadlyheat/
3ASHRAE (2001) defines Cooling Degree Days (CDDs) and Heating Degree Days (HDDs) as follows: CDD =∑365
d=1(γd)(T − 18◦C) and HDD =

∑365
d=1(1 − γd)(18◦C − T )
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Figure 1: Cooling Degree Days (CDDs) computed at a base temperature of 18◦C in selected OECD

countries.

At present two third of the AC units are concentrated in China, US, and Japan, whereas the above

mentioned OECD countries, with the exception of Japan, have historically had low adoption rates.

While the US uses about 20% of final residential electricity for cooling, this percentage is much lower

for the other countries, as shown in Table 1. Even these eight OECD countries are quite heterogeneous

in terms of electricity for AC, with the share varying between very small values in the Netherlands,

up to 5 and 6% in Japan and Australia, respectively. Patterns of electricity use in the final residential

mix also vary quite a lot, from the Netherlands which only uses 18% of electricity to Australia and

Japan where the share is around 50%. Some of these countries also use a significant share of electricity

for heating, Canada (39%) and Sweden (34%).

Table 1: Average electricity share (%) in the US and selected OECD countries between 2000 and 2017.

AUS CAN CHE ESP FRA JPN NLD SWE US

Electricity for end-use 49.0 40.3 25.5 37.6 29.1 50.3 17.9 48.4 44.2

Electricity for heating 6.4 38.7 22.1 18.8 29.2 7.7 5.8 34.5 9.1

Electricity for cooling 5.8 4.4 1.5 2.0 NA 5.1 0.3 NA 20.4

Data source: https://www.enerdata.net/. France and Sweden do not report statistics for air conditioning energy.
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Figure 2 displays the recent trends in the share of electricity expenditure on cooling relative to total

final residential electricity. With the exception of Japan, where adoption rates were about 90% already

in 2011 (see Table 2),4 the share of electricity being allocated to cooling has been increasing even in

the coldest countries of our sample, Switzerland and Netherlands.

Figure 2: Share of AC electricity consumption relative to total electricity.

Data source: https://www.enerdata.net/. France and Sweden do not report statistics for air conditioning energy.

3 Theoretical and Empirical framework

People combine electricity, natural gas, heating oil with durable goods in order to obtain energy services

such as cooking, lighting, space heating and cooling. Consumers use durables at the intensity level

that provides the necessary service. Yet the choices of purchasing appliances and of how intensively

using them are related. We can therefore model the utility of energy services as follows:

U = U(ES,D, C;X,W) (1)

where ES is a vector of energy sources like electricity, the vector D represents durables goods that

affect the marginal utility of energy use like air conditioning and C stands for aggregate consumption.

The utility function is then affected by a set of household characteristics (X) as well as weather and

climatic conditions (W), which also influence the marginal utility of energy services. A household

4The declining trend in the share observed in Japan might be due to other policies and regulations that have been

implemented in order to reduce cooling demand.
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maximizes utility by choosing ES, D, and C subject to her budget constraint:

Y − PesES− C = 0 (2)

where Y is household income, Pes the price of energy sources while the price of aggregate consumption

is normalized to 1.

Utility maximizing energy demand is also a function of weather and climatic conditions, ES∗(W), and

households choose energy and durables in order to control the interior temperature Win by adopting

new energy-using appliances such as air conditioners (extensive margin) and by adjusting actual energy

use (intensive margin). Together the adoption of energy goods and the quantity of electricity determine

the desired level of temperature or more generally the level of thermal comfort, W ∗, which depends

on the absolute difference between interior, Win, and external Wout temperature:

ES = ES(|Win −Wout|D;Y,X) (3)

We focus on the demand for electricity, which we denote with Q, and how that is being affected by

the acquisition of air conditioners.5 Electricity demand is modelled using a log-functional form:

lnQi = βi + βcddCDDi + βhddHDDi + βacACi + βplnPi + βylnYi + βxXi + εi (4)

Eq.(4) is the equation of interest (using Wooldrige 2015’s terminology it is the structural equation)

describing electricity demand for household i in kWh (intensive margin) as a function of electricity

price (P ), air conditioning (AC), a set of climate variables describing Cooling and Heating Degree

Days, CDD and HDD, see footnote 3, for the geo-located household i, income (Y ), and a set of

additional household-specific control variables (X) including other electricity-using appliances, house

characteristics (size, type, insulation), household size, location in urban areas, education, age, sex,

as well as attitudes towards energy efficient behaviors. The error term ε is assumed to be normally

distributed with zero mean and variance of one.

As shown in Krishnamurthy and Kriström (2015), Eq.(4) can be expressed in term of electricity

expenditure (E):

lnEi = βi + βcddCDDi + βhddHDDi + βacACi + β̃plnPi + βylnYi + βxXi + εi (5)

where β̃p = (1 + βp).

Given the equivalence between Eq.(4) and (5),6 our empirical model uses electricity expenditure as

5While we control for the number of other appliances that use electricity, the survey does not report information on

the ownership of electric heaters for heating.
6The coefficient β̃p in Eq. (5) is not the price elasticity, which can be computed as βp = β̃p − 1
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dependent variable, being this variable available for a larger number of households.7

Household demand for air conditioning and electricity are related (Dubin and McFadden 1984) and

share unobservable common determinants difficult to measure in a cross sectional setting. We identify

at least three potential sources of endogeneity for AC, E(ACi, εi 6=0), the adoption decision. First,

unobserved factors could simultaneously affect the adoption of air conditioning as well as the actual

quantity of electricity used (for example, individual body characteristics that affect the balance point

for thermal comfort). Second, selection bias, which refers to the selectivity of people who tend to

adopt AC. For example, households with more income are more likely to adopt all the possible comfort

appliances including air condition and it is impossible to identify the effect of air conditioning adoption

on quantity just by comparing the characteristics of households with and without air condition. Third,

the adoption of air conditioning is a small investment that might be affected by households’s risk

adversion, a characteristics that we do not perfectly observed then, the problem of omitted variable

bias arise.

We address endogeneity of AC, which has a binary nature, by adopting the well-known Control

Function (CF) approach as in Wooldridge (2015).8 The CF is a variable that when added to the

regression makes an endogenous variable of interest exogenous. The reduced form Eq.(6) expresses

the endogenous variable (AC) as a function of all exogenous variables included in Eq.(4) plus the

exclusion restriction that we identify in the average value of past imports of air conditioning machines

for the period 1990-2000 (IMP ) :

ACi = γi + γcddCDDi + γhddHDDi + γimpIMPi + γplnPi + γylnYi + γxXi + µi (6)

where µ ∼ Normal (0, 1). The key assumptions are the relevance of the exclusion restriction in Eq.(6)

and its orthogonality with electricity demand in Eq.(4), aside from the indirect route via AC, E(IMPi,

εi =0).

Since our dataset is a cross-section, we do not have information on past AC demand at the same

resolution of our data. The past average value of air conditioning machine imports represents a good

proxy for air conditioning demand, considering that the majority of countries included in the analysis

are AC importers. Only Japan has been among the top exporters as well, with a share over world

exports of 25% in 1990, of 10% in 2000, and of 6% in 2010. Trade data is the only source available at

high industrial classification that makes it possible to identify AC machines,9 while production and

demand data are not available at global scale. We use the decade 1990-2000 to avoid contemporaneous

7Only 18.8 % of our sample reports information on the quantity of electricity consumed against the 56.7 % of those

reporting their electricity expenditure.
8Wooldridge (2015) shows that the control function approach can be applied either to linear or not linear setting.
9Our import data are from UNComtrade and uses the product category, 71912, air conditioning machines, according to

the Standard International Trade Classification SITC Rev.1. Data downloaded from https://comtrade.un.org/data/

on January 24 2019.

8

https://comtrade.un.org/data/


correlation between the AC imports and electricity consumption. The use of a 10-year time window is

motivated by the average lifetime of AC machines. As shown in Figure 3, starting from the 1990s all

countries under investigation exhibit a constant increasing trend in AC imports. Past AC import data

are available only at the country level. In order to redistribute imports to the geocoded households,

we use the distance from the Equator measured by the Latitude variable available in our dataset

and therefore interact country-level imports with the latitude of households. This procedure makes it

possible to create variability at the same spatial level of our data (geocoded points), which we exploit

as identification strategy

Figure 3: Value of AC imports in selected OECD countries.

Notes: Red lines mark the period 1990-2000 which is used to define the exclusion restriction.

The CF approach used to address the endogeneity of AC relies on the correlation between the structural

error term (εi) and the reduced-form error (µi), whose relationship is described by the following linear

equation:

εi = E(εi|µi) + ei (7)

where E(µi, ei = 0).

The procedure is implemented in two steps. From the reduced-form regression of the endogenous

variable AC against exogenous explanatory variables a new variable, the control function, CFi, is

created and added as an additional variable in the expenditure on electricity equation. As expressed

in Eq.(7), ε can be decomposed into its mean conditional on µi and the deviation around its mean,

which by construction is not correlated with µi (Train 2009). The conditional expectation, E(εi|µi), is a
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function of µi and it represents our control function (CF), which in the simplest case is E(εi|µi) = λiµi.

Eq.(4) is then modified as follows:

lnEi = βi + βcddCDDi + βhddHDDi + βacACi + λcfCFi + β̃plnPi + βylnYi + βxXi + ei (8)

Wooldridge (2015) shows that when the exogenous explanatory variable is a binary variable and the

corresponding reduced form equation (5) is estimated through a probit model the derived control

function is simply the well-known inverse Mills ratio CF (·) = φ(·)/Φ(·).

As presented by Wooldridge, the control function is a flexible approach that can also be used to

estimate a random coefficient model which allows for random coefficients to be correlated with the

explanatory variable of interest. In our case, the air conditioning adoption may vary across individuals

in ways that cannot be observed fully and therefore depends also on unobservables. In our framework,

it is possible to combine the problem of self-selection and endogeneity of air conditioning adoption

- provided that there is a valid exclusion restriction - with the correlated random coefficient model

simply adding to Eq. (8) the interaction between air conditioning adoption and the CF.10

lnEi = βi + βcddCDDi + βhddHDDi + βacACi + λcfCFi + θrcACiCFi

+β̃plnPi + βylnYi + βxXi + ei

(9)

The interaction term, identified in θ, accounts for the random coefficient on AC.

4 Data

The dataset used to estimate Eq.(8) combines the 2011 Environmental Policy and Individual Behaviour

Change survey (EPIC, OECD, 2014), which collects data for 12,200 households, with long-term av-

erages (1986-2010) of gridded annual CDDs and HDDs. Stratification and quota sampling on a set

of key variables (gender, age, region, income) are used to ensure that the survey is representative

at country-level, see Annex B in OECD (2014) for more details. Of the eleven countries that have

been covered in the EPIC survey, we retained Australia, Canada, France, Japan, Netherlands, Spain,

Sweden and Switzerland, where the location of each family has been geocoded, adding an additional

source of cross-sectoral heterogeneity within country.11

CDDs and HDDs are the measures commonly used in the energy demand literature to capture the

typical intensity and duration of hot and cold climate (Atalla et al. 2018). CDDs and HDDs have

been calculated using the daily temperature (degree Celsius) data aggregated from the 3-hourly global

surface gridded temperature (0.25◦ x 0.25◦ resolution, approximately 27x27 km at the equator) fields

obtained from GLDAS (Rodell et al. 2004). We have computed CDDs and HDDs as a proxy for past

long-term climatic conditions considering the average from 1986 to 2010, in line with the practice of

10See Wooldridge 2015 for applications on linear and non linear models.
11The geocoded households for the countries listed above are 7449.
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using long-term climatici conditions in cross-sectional studies (e.g. see Mansur et al. 2008). Since the

calculation of CDDs and HDDs is sensitive to the balance point chosen, we test different thresholds

between 18 and 25◦C. Indeed, although 18◦C is the most used temperature threshold in the literature

(e.g, Sailor and Pavlova 2003, Akpinar-Ferrand and Singh 2010, Deschênes and Greenstone 2011,

Rapson 2014) recent studies have started to explore different thresholds (Levesque et al. 2018).

Increasing the threshold at which AC can be turned on is also part of the policy strategies aimed at

reducing energy consumption of several countries, for example Japan and India.12

Figure 4 plots the spatial distribution of households’s ownership of AC along with the long-term average

of CDDs and HDDs. Red dots identify households exposed to high CDDs owning an air conditioner.

Clusters generally coincide with major urban centers or with the southern part of countries. A number

of households especially in France and Spain highlighted in light red did not own AC as of 2011 despite

being exposed to relatively warm climatic conditions. The map also shows the households having AC

although CDDs are below the sample average (blue dots). The smaller, lighter blue dots are the

households without AC and with a relatively low exposure to CDDs. Maps also visualize the great

climate variability that is observed within countries across households, as well as the tendency for

urban centers to register higher temperature due to the heat island effect (see also Table 2).

12The survey and climate data have been merged using the rgdal package in R and the DIVA-GIS shapefile provided

by the Database of Global Administrative Areas (GDAM). We have used the extract function of the raster package to

extract GLDAS CDD/HDD observations for each OECD participant through geo-location. The CDDs/HDDs grid-cells

(pixels) are retained and assigned to each household only where the OECD spatial points fall over them. Each grid cell

and each household is then assigned to the region that overlaps with the largest share of the grid-cell. Note that the

GLDAS grid-cells close to water have missing values. These households have therefore been dropped.
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Figure 4: CDDs 18◦C (1986-2010) and AC ownership (EPIC Survey, 2011).

Australia Canada France

Japan Netherlands Spain

Sweden Switzerland

Notes: Red dots: households with high CDDs and with AC. Light red: high CDDs, no AC. Blue: low CDDs, with AC. Light Blue:

low CDDs, no AC. High and low CDD levels are defined relative to the sample median across the 8 countries of 160 degree days.

The OECD survey collects a number of energy-related variables including energy expenditure (in

euros referring to the last year) and energy consumption (in kWh) that we combine with household

socio-demographic characteristics and attitudinal characteristics. As mentioned before, only a subset

of households report information on annual quantity of electricity consumed in kWh.13Given that

the survey collects data also on annual electricity bills we follow Krishnamurthy and Kriström (2015)

13In our selected sample only 1402 provide this information which represent 18.8% of the sample.
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and use total annual expenditure instead of the quantity of electricity as our variable of interest.

To ensure outlier values do not influence results, we trimmed electricity expenditure at the upper

and lower estreme values of 1%. After accounting for the missing values in our relevant variables we

conduct the analysis for 3711 geocoded households.

Table 1 presents the variables used in the empirical analysis by country. The prices of electricity

calculated within the sample are in line with the official statistics, with the exception of Australia,

which shows a relatively larger price. Electricity prices are computed as average prices, Pi = Ei/Qi

following the practice of household-level studies that typically lack information on energy prices (see

Fell et al. 2014, Alberini and Filippini 2011 for a discussion).14 Given that energy prices are often

not reported, studies on residential energy demand using household survey data often rely on im-

puted prices and quantities (Fell et. al 2014). For example, Branch’s (1993) study on the Consumer

Expenditure Survey for the US uses state-level average electricity prices as household prices. Also,

Alberini et al. (2011) uses the average price of a given utility by state. The literature (e.g. Alberini

et. al 2011, Fell et al 2014 and Krishnamurthy and Kriström, 2015) supports the view that house-

holds’ consumption decisions respond to average not marginal prices. In fact, even if marginal prices

varies with the quantity consumed and can vary by season to season they are costly to determine

as it seems improbable that households keep track of the variation of marginal prices or they know

marginal prices when consumption decisions are made. Instead, average prices are easily calculated

by the electric bills. Moreover, consumers are more likely to devote a certain share of their income to

electricity consumption. However, the use of average prices as a independent variable in a specification

in which quantity or expenditure on electricity is the dependent variable is not without drawback. In

fact, average prices are measured with errors and can create endogeneity problems. Krishnamurthy

and Kriström 2015 who use our same survey and similar specification show that in the case of the

double-log demand function the bias coming from the prices is not large enough to take away the

results (see Krishnamurthy and Kriström ’s paper for more details).

The adoption of air conditioning ranges from almost 90% in Japan to only 5% in Switzerland. Switzer-

land is the country with less homeowners (39%) and households living in urban areas (34%) while

82% of households in Spain own their primary residence. Above 70% of households in Australia and

Japan live in urban areas. Our data seems to suggest that those countries with higher concentration

of households in urban areas are also the countries with deeper air conditioning adoption. Countries

with the highest urbanization rates (Australia and Japan) have also the highest value of CDDs, the

variable that most strongly correlates with AC ownership. Yet, Canada provide a counter example,

showing relatively high AC adoption rates (48%) despite the relatively low CDDs value.

Efficient windows and thermal insulation indicate whether a household has implemented any of those

14Actual consumption and expenditure are used to derive prices. For those households who do not provide consumption

we construct the prices using the average price in the country given the stability of price at the country level.
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two investment types, which influence electricity demand and help to give a better picture of the

household standards of living.15 The Netherlands and Australia are the countries with a higher per-

centage of household who have invested in improving thermal insulation (62% and 58%, respectively)

and the efficiency of windows. On the one hand, improved thermal insulation can reduce cooling and

heating needs. On the other hand, overheating due to more heat being trapped inside of the building

might require a more frequent use of air conditioning (Jakubcionis and Carlsson, 2017). Overall, the

effect of improving the thermal insulation of windows and walls on final electricity demand can be

ambiguous, and being influenced also by the location (urban versus rural) as well as by the type of

heating system, whether it is based on electricity or not.

Residential electricity demand depends also on household characteristics and behaviour. A unique

feature of the OECD EPIC survey is that it reports a number of attitudinal variables that specifically

relate to the use of energy and concerns for the environment. Of particular interest in this context is

the energy behaviour index, which summarizes the energy-saving behaviours of a household in a score

between 0 and 10. The higher the score, the more frequent the household implements behaviours such

as switching off the lights or cutting down heating or air conditioning to save energy consumption.

From the energy behaviour index we construct a dummy variable equal to one for those showing a

saving behaviour above the mean.16 Spanish households are those with a more energy saving orien-

tation (75%) while surprisingly Swedish people seem to be paying less attention to simple, domestic,

energy-saving practices (15%). Household size ranges from 2.4 in Canada to 2.9 in Spain and the

years of post-secondary education of the household head from 2.4 in Sweden to 4.6 in Japan. Among

the different countries under analysis differences exist in the reported annual household income with

Switzerland leading the group of households with an average high income level followed by Japan and

Australia. Finally, our variables capturing cold and hot climate show that Japan and Australia are

the countries with a higher level of CDDs while Canada, Sweden and Switzerland, as expected, are

those with the higher values of HDDs.

15We are aware that several energy appliances can affect electricity consumption such as refrigerator, washing mashine,

television. These are very widely used appliances. Almost all households in OECD countries own them and therefore we

do not have enough variability needed to perform the analysis.
16The mean in our sample is 7.32.
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Table 2: Descriptive statistics by country

Variables Australia Canada France Japan Netherlands Spain Sweden Switzerland Total
Electricity expenditure 1048.6 1032.0 837.0 1090.1 1133.9 858.6 1374.5 815.1 1018.0

(625.4) (665.2) (463.1) (883.2) (717.5) (789.6) (1125.9) (621.3) (764.6)

Electricity use (KWh) 5834.0 10178.9 6902.1 4986.5 3775.6 3974.1 11736.8 5073.5 7026.8
(7025.0) (9056.2) (5088.7) (3453.0) (2349.0) (3826.8) (8921.6) (5698.7) (7009.8)

Aircondit 0.728 0.483 0.133 0.90 0.116 0.536 0.189 0.051 0.40
(0.445) (0.500) (0.340) (0.300) (0.321) (0.499) (0.392) (0.221) (0.491)

Electricity price (euro/kWh) 1.450 0.290 0.186 0.234 0.306 0.553 0.185 0.162 0.470
(1.557) (0.309) (0.152) (0.111) (0.178) (0.597) (0.164) (0.0226) (0.806)

Import AC 1990-2000 0.195 0.938 0.357 0.250 0.199 0.433 0.0972 0.0647 0.356
- - - - - - - - (0.265)

CDDs 1986-2010 (18◦C) 597.9 129.3 195.2 691.8 56.22 558.5 22.13 96.60 307.62
(438.5) (101.2) (133.3) (249.2) (17.85) (317.2) (11.86) (54.65) (342.25)

CDDs 1986-2010 (22◦C) 156.0 13.88 29.62 259.9 3.060 191.0 0.461 7.192 84.73
(174.7) (32.30) (36.10) (125.2) (2.097) (154.3) (0.675) (5.482) (136.19)

CDDs 1986-2010 (23◦C) 96.11 6.846 15.66 184.9 1.154 132.9 0.138 2.972 55.86
(124.6) (23.98) (21.29) (96.59) (1.018) (118.6) (0.244) (2.476) (98.36)

CDDs 1986-2010 (24◦C) 54.08 3.323 7.558 122.7 0.368 87.32 0.0312 1.075 34.64
(83.44) (17.45) (11.33) (70.29) (0.450) (87.03) (0.0616) (1.000) (67.27)

CDDs 1986-2010 (25◦C) 27.75 1.618 3.302 73.58 0.0932 53.62 0.00683 0.318 19.94
(51.69) (12.19) (5.434) (47.05) (0.164) (60.23) (0.0136) (0.339) (42.96)

HDDs 1986-2010 (18◦C) 1041.6 4439.2 2396.4 2148.7 2834.8 1704.4 4184.2 3294.1 2660.8
(632.2) (911.9) (442.5) (745.9) (86.41) (913.3) (514.0) (705.4) (1344.49)

Home owner 0.653 0.708 0.641 0.594 0.751 0.820 0.644 0.397 0.676
(0.476) (0.455) (0.480) (0.492) (0.433) (0.384) (0.479) (0.491) (0.468)

Household size 3.234 2.818 2.401 2.425 2.771 2.497 2.400 2.567 2.654
(1.319) (0.957) (0.729) (0.950) (0.835) (0.739) (0.678) (0.794) (0.952)

N. of other appliances 6.794 7.184 6.194 6.019 6.964 6.159 6.520 6.237 6.531
(2.703) (2.634) (2.532) (2.503) (2.538) (2.629) (2.639) (2.604) (2.633)

Effic. windows 0.0292 0.0203 0.0193 0.00937 0.0156 0.0168 0.0175 0 0.0181
(0.169) (0.141) (0.138) (0.0965) (0.124) (0.129) (0.131) - (0.133)

Thermal insulation 0.588 0.433 0.520 0.247 0.616 0.344 0.376 0.418 0.454
(0.493) (0.496) (0.500) (0.432) (0.487) (0.475) (0.485) (0.494) (0.498)

Urban area 0.775 0.669 0.449 0.700 0.465 0.619 0.537 0.340 0.587
(0.418) (0.471) (0.498) (0.459) (0.499) (0.486) (0.499) (0.475) (0.493)

HH size 2.820 2.438 2.701 3.013 2.618 2.973 2.452 2.598 2.707
(1.475) (1.158) (1.153) (1.607) (1.142) (1.097) (1.157) (1.329) (1.268)

Share of members under18 0.164 0.127 0.173 0.130 0.154 0.163 0.173 0.160 0.157
(0.228) (0.210) (0.235) (0.211) (0.234) (0.219) (0.238) (0.225) (0.226)

Age of the hh head 45.21 47.25 45.19 45.81 46.46 43.76 44.73 44.51 45.36
(13.40) (13.05) (13.28) (10.95) (12.56) (12.35) (13.17) (12.45) (12.84)

Gender of the hh head (male) 0.521 0.526 0.530 0.547 0.584 0.547 0.566 0.593 0.545
(0.500) (0.500) (0.499) (0.499) (0.493) (0.498) (0.496) (0.493) (0.498)

HH head’s years of post-educ 3.390 3.188 2.759 4.800 4.587 3.814 2.476 2.933 3.422
(3.500) (2.938) (2.399) (4.088) (3.163) (2.986) (2.497) (2.724) (3.116)

Annual hh income 48683.2 42912.8 38617.4 52422.7 40287.7 30706.4 42190.3 63863.0 42633.1
(27096.7) (26302.3) (17377.0) (30656.7) (16536.7) (16712.8) (18133.6) (30144.0) (23877.6)

Energy saving behaviour 8.001 7.234 8.044 7.241 7.086 8.356 5.512 6.781 7.429
(1.595) (1.650) (1.545) (1.856) (1.728) (1.458) (1.800) (1.875) (1.864)

Observations 582 544 675 320 385 596 458 194 3754

Notes: Standard deviation in parenthesis. Descriptive statistics derived by a trimmed model for which the upper and lower 1% of

observations on expenditure of electricity are dropped. CDDs and HDDs are computed over thresholds of 18, 22, 23, 24, 25◦C. Prices

and annual income are in Euros. Income level refers to the average annual income after tax.
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5 Results

The regression results from our preferred specifications are reported in Table 2 in which columns (1)

and (2) show respectively the probit coefficients and marginal effects on adopting air conditioning.

Remaining columns present the estimates for the electricity expenditure equatiton without accounting

for the potential endogeneity of air conditioning (Column 3), using a Control Function approach

(Column 4) and using a more flexible Control Function approach allowing for correlated random

coefficients (Column 5).

Our estimates suggest that indeed air conditioning is endogenous and the Control Function approach

should be preferred. Although the bias produced by the OLS model is quite small, not accounting

for the endogeneity of AC leads to an overestimation of the marginal impact of climatic conditions

on electricity expenditure. The OLS regression indicates that CDDs has an additional influence on

electricity expenditure beside the AC channel, whereas this effect goes away in the CF specification.

Instead, we can ignore the random coefficienct on air conditioning given that the interaction term

between IMR and aircondit is not statistically significant, as shown in column (5), suggesting that

air conditioning heterogeneity across individuals is not an issue in our analysis. Home characteristics

and location as well as household socio-economic characteristics seems to absorb the majority of

heterogenenity in our sample.

Our results show that air conditioning significantly affects households’ electricity demand, along with

other electricity-using durables (number of other appliances), shifting the electricity demand equation

to the right. Households that have acquired AC, on average spend about 9.9% more on electricity,

an impact comparable to a 10% increase in income. This result is also very close to what found by

Barreca et al. (2016) for the US. Using electricity quantity data they find that households with AC

consume 11% more of annual electricity. To put our numbers into perspective, a Standard Deviation

(SD) increase in AC (0.49) compared to the mean value (0.4) would increase electricity expenditure

by 4.5%, which is similar to the additional electricity expenditure that would be induced by a SD

increase in income and number of appliances (of about 4.5% and 3.6%, respectively).

A key role in the implementation of the CF approach is played by the exclusion restriction, which is

identified in the past AC imports interacted with latitude. Past AC imports affect the probability of

air conditioning adoption by 3% at the level of significance of 1%. An F-statistics larger than 10 (12.17)

supports the relevance of our exclusion restriction. Table A.1 shows that the exclusion restriction holds

across three different variations of the main model in which Japan is excluded (model 2), other forms

of investments that can be influenced by CDDs are included (model 3), we combine model 2 and 3. A

specification without Japan is considered because during the 90s this country was among the top 5 air

conditioner machine exporters, though its export share over world exports of AC machines declined

from 25% in 1990 to 6% in 2010, when China took the lead with a 32% share. Climatic conditions
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might influence other investment decisions related to thermal comfort, and we tested whether the

exclusion restriction holds when including thermal insulation and efficient windows. Estimates from

the IV regressions show that our results are robust to the different specifications.

An important determinant of the decision to adopt air conditioning and consequently of the use of

electricity is the exposure to warmer climatic conditions. Long-term CDD averages, a proxy for long-

term climatic conditions, are positively related with the AC adoption decision. Marginal effects suggest

that a 1% increase in long term average CDDs raises the probability of adopting air conditioning by

0.04%. A 100% increase in CDDs, which is comparable to 1 SD increase, would raise the AC share

by 4%. For comparison consider that the mean and the SD values of CDDs in the sample is 308 and

that moving from the average climate of France (mean CDDs equal to 195) to that of Spain (mean

CDDs equal to 558) would imply a percentage increase in past CDDs of 111%. In the CF approach,

the CDDs effect on electricity expenditure seems to be absorbed by AC, while HDDs continue to have

an impact, capturing the heating signal of those households using electricity also for heating.

Price of electricity does not affect the decision of adopting air conditioning but it does have an impact

on electricity expenditure. A one percent increase in price reduces expenditure by -0.86%, suggesting

that the demand of electricity is unelastic changing less then the variation of price, as found in previous

studies (i.e. Alberini et al. 2011). A SD increase in electricity prices over the mean value would reduce

electricity expenditure by about 9%, an impact comparable in size to that of AC.

Household and house characteristics are important determinants of AC adoption and expenditure

decisions. Income affects electricity expenditure. One percent increase in income raises the demand

of air conditioning by 4% and the expenditure of electricity by 10%. These elasticities are significant

at 5% and 1% level. As found also in Krishnamurthy and Kriström (2015), both household size

and home size are positively associated with energy expenditure, but those variables do not affect

the adoption of air conditioning. On the one hand, electricity usage increases with the age of the

respondent. As argued by Fell. et all. (2014), the age of the respondent may be an indicator of the

presence of older individual in the household who may spend more time at home, due to reduced

working hours, therefore consuming more electricity. Younger member spend more time outside the

house (e.g school, activities) and consume less electricity. As the share of young members below 18

years old increases the adoption of air contitioning goes up by 16%. Households members under 18

would be still in education and the household decision to adopt air conditioning may be due to the

fact that their children need a cooling enviroment to study. More in general, air conditioning adoption

represents a household strategy to protect minors from the exposure to hot weather (Deschenes and

Greenstone 2011). Gender and education of the household head affect air conditioning adoption with

a different sign. Households with a male head are 5% more likely to have air conditioning while on

the other hand, households led by a male head spend 7% less on electricity suggesting that men pay

more attention, on average, on household consumption and expenditure. As the head’s years of post-
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education increases households are 0.5% less likely to invest in air conditioning. The latter finding

could be related to the fact that more educated individuals are more aware of the impact of energy

on the enviroment and may try to reduce the use of appliances. The impact of education on quantity

of electricity disappears when we adopt the control function model even if the sign of the coefficient

remains negative. A very similar pattern is found for the energy behaviour index. Households who

are more concern about the enviroment tend to adopt a saving behaviour are less likely to adopt an

air conditioners and to spend less on electricity, but the statistical evidence is weak, as the coefficient

of the energy saving behaviour variable is not statistically significant (p-value of 0.131 in the adoption

equation and 0.2 in the electricity expenditure equation).

When we turn our attention to the home characteristics and location, we find that living in an urban

area increases the probability of having AC by 9%. CDDs are higher in urban locations due to the

heat-island effect, and households respond with a higher investment in cooling systems. The same

variable, living in an urban location, is associated with a lower expenditure on electricity. Access to

more efficient appliances or better insulation might help cut consumption. Households with a higher

number of appliances tend to have a higher propensity towards AC adoption, which might indicate

that households used to higher standards of comfort are also more likely to adopt AC.
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Table 3: Estimates for the adoption and expenditure decisions

Air conditioning Expenditure on Electricity

VARIABLES Probit coeff Probit mfx OLS CF CF(crc)

Past AC imports * latitude 0.0857*** 0.0325***
(0.025) (0.009)

CDDs 1986-2010 0.0011*** 0.0004*** 0.0001** -0.0000 -0.0000
(0.000) (0.000) (0.000) (0.000) (0.000)

HDDs 1986-2010 0.0001 0.0000 0.0001* 0.0000** 0.0000**
(0.000) (0.000) (0.000) (0.000) (0.000)

Log(price of electricity) 0.0098 0.0037 0.1381*** 0.1396*** 0.1395***
(0.040) (0.015) (0.023) (0.024) (0.024)

Home owner 0.1985*** 0.0743*** 0.1201*** 0.0740** 0.0726**
(0.060) (0.022) (0.024) (0.031) (0.032)

Home size -0.0281 -0.0107 0.0600*** 0.0637*** 0.0641***
(0.031) (0.012) (0.013) (0.014) (0.014)

N. of other appliances 0.1286*** 0.0488*** 0.0403*** 0.0134 0.0123
(0.012) (0.005) (0.005) (0.010) (0.010)

Urban area 0.2383*** 0.0896*** -0.1937*** -0.2461*** -0.2484***
(0.052) (0.020) (0.023) (0.029) (0.029)

Household size -0.1015*** -0.0385*** 0.1047*** 0.1259*** 0.1267***
(0.029) (0.011) (0.011) (0.016) (0.016)

Share of members under 18 0.4444*** 0.1685*** -0.0049 -0.1050 -0.1098
(0.132) (0.050) (0.059) (0.073) (0.074)

Age of the hh head -0.0010 -0.0004 0.0051*** 0.0053*** 0.0053***
(0.002) (0.001) (0.001) (0.001) (0.001)

Sex of the hh head (male) 0.1391*** 0.0526*** -0.0397* -0.0721*** -0.0735***
(0.052) (0.020) (0.021) (0.025) (0.025)

Head’s years of post-secondary school -0.0153** -0.0058** -0.0064* -0.0037 -0.0036
(0.008) (0.003) (0.003) (0.004) (0.004)

Log(income) 0.1120** 0.0425** 0.1227*** 0.1001*** 0.0990***
(0.056) (0.021) (0.022) (0.025) (0.025)

Energy saving behaviour -0.0254* -0.0096* -0.0140** -0.0079 -0.0077
(0.014) (0.005) (0.006) (0.008) (0.008)

AC 0.0990*** 0.0889*** 0.1142**
(0.025) (0.024) (0.051)

IMR -0.3519*** -0.3572***
(0.096) (0.097)

IMR*AC -0.0270
(0.049)

Constant -2.46*** 4.51*** 5.43*** 5.46***
(0.648) (0.246) (0.336) (0.338)

Country FE Yes Yes Yes Yes

F-test 1st stage 12.17
P-value joint 0.00
Observations 3,711 3,711 3,711 3,711 3,711
R-squared 0.255

Notes: Robust standard errors in parentheses adjusted for 1086 clusters (districts). *** p<0.01, ** p<0.05, *

p<0.1. Reported results are based on a trimmed model in which the upper and lower 1% of electricity expenditure

observations are dropped. Average electricity prices are constructed as the ratio between quantity and expenditure.

Households not reporting the quantity of electricity are imputed country-level average prices. Country controls

include Australia, Canada, France, Japan, Netherlands, Spain, Sweden and Switzerland. Price elasticity is computed

as βp = β̃p − 1 is -0.86. F-test for the relevance of our exclusion restriction comes from the IV-regression.

The typical thermal comfort standards used in the calculation of CDDs have been developed for for

commercial settings in the UK and USA, and use a low base temperature of 18–22◦C, which previous

studies suggest could result in exaggerated estimates of energy demand (Azevedo et al. 2015). The

descriptive statistics in Table 2 indeed show that the mean occurrence of CDDs drops significantly

when a 25◦C threhsold is considered as opposed to 18, from a mean value of 308 to 20 degree days.

Yet, the actual impact on AC adoption and electricity expenditure depends on the interaction between

exposure (number of CDDs) and sensitivity (estimated coefficients).
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Table 4 shows the impact of CDDs when different temperature thresholds are used to calcuate CDDs.

As we move towards higher thresholds, from 18◦C up to 25◦C, the marginal effect of one additional

degree day on the adoption decision increases significantly. The extent of the intensive margin goes

up as well (third and fourth columns), but once endogeneity is properly controlled for, the impact

of CDDs on electricity expenditure is only indirect. The variation in the estimated coefficient of AC

across different CDD thresholds is limited, suggesting that the biggest impact of using a different

temperature cutoff is on the adoption decision.

Table 4: Estimates with different CDDs thresholds

Air conditioning Expenditure on electricity

VARIABLES Probit coeff. Probit mfx OLS CF

CDDs 1986-2010 (18◦C) 0.0011*** 0.0004*** -0.000 -0.000
(0.000) (0.000) (0.000) (0.000)

HDD 1986-2010 (18◦C) 0.0001 0.000 0.0001*** -0.0000
(0.000) (0.000) (0.000) (0.000)

AC 0.0990*** 0.0889***
(0.025) (0.024)

CDD 1986-2010 (22◦C) 0.0026*** 0.0010*** 0.0004*** -0.0001
(0.000) (0.000) (0.000) (0.000)

HDD 1986-2010 (18◦C) 0.0000 0.0000 0.0001* 0.0000**
(0.000) (0.000) (0.000) (0.000)

AC 0.0920*** 0.0879***
(0.030) (0.024)

CDD 1986-2010 (23◦C) 0.0034*** 0.0013*** 0.0005*** -0.0001
(0.001) (0.000) (0.000) (0.000)

HDD 1986-2010 (18◦C) 0.0000 0.0000 0.0001* 0.0001**
(0.000) (0.000) (0.000) (0.000)

AC 0.0922*** 0.0886***
(0.030) (0.024)

CDD1986-2010 (24◦C) 0.0045*** 0.0017*** 0.0007*** -0.0001
(0.001) (0.000) (0.000) (0.000)

HDD 1986-2010 (18◦C) -0.0000 -0.0000 0.0001* 0.0001***
(0.000) (0.000) (0.000) (0.000)

AC 0.0924*** 0.0896***
(0.030) (0.024)

CDD 1986-2010 (25◦C) 0.0062*** 0.0024*** 0.0011*** -0.0001
(0.002) (0.001) (0.000) (0.000)

HDD 1986-2010 (18◦C) -0.0001 -0.0000 0.0000* 0.0001***
(0.000) (0.000) (0.000) (0.000)

AC 0.0930*** 0.0909***
(0.030) (0.024)

Notes: Robust standard errors in parentheses adjusted for 1086 clusters (districts). *** p<0.01,

** p<0.05, * p<0.1. Reported results are based on a trimmed model in which the upper and lower

1% of electricity expenditure observations are dropped. Average electricity prices are constructed

as the ratio between quantity and expenditure. Households not reporting the quantity of electricity

are imputed country-level average prices. The relevance of our exclusion restriction holds across the

different CDD threshold-specifications. Country controls include Australia, Canada, France, Japan,

Netherlands, Spain, Sweden and Switzerland. The table summarizes the estimation results using

different thresholds to compute CDDs.
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6 Discussion and conclusions

Empirically-based measures of price, income, and climate elasticities are important inputs into the

analysis of climate and energy policies, as well as for projecting future energy trends. Air conditiong is

emerging as potentially a critical driver of future electricity demand, although much of the debate and

also much of the most recent empirical analyses has been mostly addressing either major users, the

US, or emerging tropical countries, such as India and Mexico. The focus on countries with good data

availability (the US), and more recently on emerging economies has left a research gap concerning AC

and electricity demand in European and other OECD countries. In this paper we address this gap,

contributing to expand the empirical evidence on how air conditioning adoption influences household-

level electricity expenditure in relation to demographic characteristics, socio-economic conditions, and

climate conditions using a cross-sectional dataset of geo-coded households across eight different OECD

countries.

AC significantly affects electricity expenditure. In terms of magnitude, a standard deviation increase

in the AC share has an impact that is comparable to that of a standard deviation increase in income,

in the number of other electricity-using appliances, or in electricity prices, though with opposite sign.

We also show that the main effect of Cooling Degree Days on electricity expenditure is modulated

by the AC utilization, and that once AC is correctly specified in the electricity expenditure equation,

long-term climate conditions influence electricity expenditure only indirectly, through the effect on air

conditioner acquisition. In other words, there do not seem to be other major mechanims beside space

cooling through which climatic conditions influence electricity use. Heating Degree Days (HDDs)

remain a significant driver of electricity expenditure, as they capture the heating signal. In addition

to income and climate, air conditioning adoption is also influenced by a rich set of determinants, such

as location in urban areas, presence of minors in the family, household size, gender, sex, education,

behavioural attiudes towards the environments, some of which also affect expenditure patterns.

Our results suggest that climate change, by increasing the frequency of CDDs, could lead to wider AC

adoption and therefore to a larger share of household income being allocated to electricity consumption.

Whether improved AC efficiency will partly compensate the increase in energy expenditure remains to

be studied. Still, in a context of increasing electricity prices due to electrification pushed by ambitious

climate policies especially in European and industrialized countries, energy poverty could occur for

two reasons. People might not be able to afford technologies such as AC, leading to disutility costs. At

a given income level, electricity expenditure might increase. As an illustrative example, we compute

the proportion of households whose share of electricity expenditure in income is more than twice the

median share in our sample of OECD countries.17 In order to isolate what would be the impact of

17This is one possible indicator of energy poverty. For a list of energy poverty indicators, see https://www.

energypoverty.eu/indicators-data.
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climate change on energy poverty, we only consider a change in CDDs due to high and moderate

warming, as in the Representative Concentration Pathway scenarios (van Vuuren et al. 2014) RCP4.5

(moderate warming) and 8.5 (higher warming), keeping everything else, including income, constant

to the 2011 level. Climate projections are from the NASA Earth Exchange Global Daily Downscaled

Projections (NEX-GDDP), which provides bias-corrected daily maximum and minimum temperatures

on a 0.25deg x 0.25deg grid simulated by 21 Earth System Models participating in the global Climate

Model Intercomparison Project round 5 (CMIP5). We use the multi-model median increase in CDDs

between 2021 and 2060 compared to 1986-2005. Around year 2040, CDDs would increase between

162 and 247%, on average, under moderate and vigorous warming, respectively, for a total average

of 121 and 161 additional CDDs. AC adoption would increase from about 30%, on average, to

33%, with larger increases in cold countries such as Sweden (from 16% to 22%). On average, these

higher adoption rates translate into higher electricity expenditure, between 12% (in France) and 73%

(in Sweden). The number of households that actually has an expenditure share above twice the

median value, which is about 2% of annual average income, is about 17%. Assuming income does

not change and considering only the climate shocks, the number of energy poor households would

double under high warming, increasing from an average of 86 to 138 households. Addressing the

broader distributional and macroeconomic implications requires a general equilibrium approach that

goes beyond the partial equilibrium analysis of this paper, but which could use the estimated marginal

effects as inputs.

Our study is not without caveats. The availability of geocoded data made it possible to have an

heterogeneous sample with respect to several dimensions both within and across countries. Yet, it

should be acknowledged that data reported on electricity expenditure and consumption are not always

reliable, an issue that is partly mitigated by trimming the sample, at the cost of reducing the sample

size. Moreover, our dataset goes back to 2011. Having a new wave of the same survey for a more

recent year would enable major advacements on this topic. Another potential issue is the endogeneity

of average prices, which can be related to measurement errors and simultaneity. Here we focus on

the endogeneity of air conditioning, our variable of interest, and show to what extent our estimated

elasticities might be biased (Alberini et al. 2011). Our climatic indicators are CDDs and HDDs,

but since they are computed as annual average of number of days with temperature below or above a

thresholds, they miss the inter-annual variability in the extremes, which more and more drive decisions

related to air conditioning adoption. Future work will explore the role of extreme event indices and

extend the analysis to non-OECD countries. Although we control for a rich set of covariates, and

the Control Function approach makes it also possible to include correlated random coefficients, future

work will examine the research question addressed by this paper using household-level panel data.
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A Appendix

Table A.1: IV Estimates for the expenditure on electricity

Expenditure on electricity

(1) (2) (3) (4)

AC 1.2201*** 1.2932*** 1.2265*** 1.3006***
(0.386) (0.428) (0.386) (0.428)

CDDs 1986-2010 -0.0002 -0.0002 -0.0002 -0.0002
(0.000) (0.000) (0.000) (0.000)

HDDs 1986-2010 0.0000 0.0000 0.0000 0.0000
(0.000) (0.000) (0.000) (0.000)

Log (price of electricity) 0.1372*** 0.1252*** 0.1382*** 0.1264***
(0.026) (0.026) (0.026) (0.026)

Home owner 0.0701** 0.0469 0.0698** 0.0476
(0.033) (0.037) (0.034) (0.038)

Home size 0.0676*** 0.0682*** 0.0672*** 0.0679***
(0.017) (0.018) (0.017) (0.018)

N. of other appliances 0.0025 -0.0008 0.0033 0.0001
(0.015) (0.017) (0.014) (0.017)

Effic. windows -0.1693* -0.1819*
(0.102) (0.110)

Thermal insulation 0.0014 -0.0027
(0.027) (0.030)

Urban area -0.2659*** -0.2841*** -0.2645*** -0.2829***
(0.039) (0.043) (0.039) (0.043)

Household size 0.1329*** 0.1305*** 0.1332*** 0.1306***
(0.018) (0.021) (0.018) (0.021)

Share of members under 18 -0.1348 -0.1546 -0.1346 -0.1534
(0.085) (0.097) (0.085) (0.097)

Age of the hh head 0.0056*** 0.0051*** 0.0055*** 0.0050***
(0.001) (0.001) (0.001) (0.001)

Sex of the hh head (male) -0.0791*** -0.0868*** -0.0793*** -0.0866***
(0.029) (0.032) (0.029) (0.032)

Head’s years of post-secondary school -0.0029 -0.0048 -0.0026 -0.0044
(0.004) (0.005) (0.004) (0.005)

Log (income) 0.0891*** 0.0899*** 0.0889*** 0.0897**
(0.032) (0.035) (0.032) (0.035)

Energy saving behaviour -0.0076 -0.0010 -0.0072 -0.0005
(0.008) (0.008) (0.008) (0.008)

Constant 4.4653*** 4.4682*** 4.4622*** 4.4662***
(0.307) (0.340) (0.310) (0.343)

Country FE Yes Yes Yes Yes

F-test 1st stage 12.17 9.84 12.25 9.90
P-value joint 0.005 0.001 0.000 0.001
Observations 3,711 3,398 3,710 3,397

Notes: Robust standard errors in parentheses adjusted for 1086 clusters (districts). *** p<0.01,

** p<0.05, * p<0.1. Reported results are based on a trimmed model in which the upper and

lower 1% observations of electricity expenditure are dropped. Country controls include Australia,

Canada, France, Japan, The Netherlands, Spain, Sweden and Switzerland. Column (1) is our

baseline specification. Column (2) excludes Japan. Column (3) includes house investments in

thermal comfort. Column (4) includes house investments in thermal comfort excluding Japan.

Estimates of our endogenous variable AC are not interpretable in the IV framework given the binary

nature of AC. Our interpretation is limited to the sign and level of significance.
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