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Abstract. In this work, I present an overview of the common pool re-6

source, which includes its definition, classification, and nature. Given7

that it is a complex problem involving several variables that favor co-8

operation, I use a coalition approach to study some of them. Namely,9

communication, group size, and homogeneity of members of a group. I10

draw from a baseline model of appropriation that reflects the dilemma of11

the common pool resources, which is a strategic game. Then using this12

model I study conditions under which forming a group may be beneficial.13

Next, I address the gains of cooperation, for which, I transform the game14

into a partition function game and verify that fulfills some results in the15

existing literature. Thus, this function is symmetric, the grand coalition16

is a efficient partition, and it has a γ-core. Besides that, I apply a game17

called the payoff sharing game to study formation of coalition structures.18

This last part is still in progress.19
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1 Introduction24

From the beginning of time, humans (homo sapiens) have been regarded as the25

most complex form of life on earth. It is well known that what distinguishes26

them from other creatures is their capacity to reason over their own conduct.27

In this sense, human behavior could be said to be driven by reasoning. How-28

ever, it is not as simple as one thinks. Humans also possess instincts and other29

characteristics such as feelings, which are actually inherent. Some of their acts30

are driven by these. Sometimes following instincts can lead to behavior that can31

jeopardize others. However -as I said- instincts have been part of humans from32

the very beginning and they have been fundamental for human evolution. Take33

for instance the survival instinct, dated back to prehistory. It brought humans34

to hunt animals to survive. But it was the capacity of reasoning that led to co-35

operation, so they could thrive and perpetuate the species. Of course, it is clear36

that they hunted mainly to meet their basic needs, but they knew, for instance,37

that in order to hunt a mammoth, it was necessary for collaboration of more38

than one member of the tribe.39
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Humans are complex beings by themselves, but they are social cooperative40

species as well. From many years ago, they have learned to live together. And41

it is in this process they have been also able to stay in contact with nature.42

They have known how to take advantage of their reasoning to make the most of43

this interaction considering or not the consequences. On the other hand, nature44

provides resources that humans take for their livelihood, benefit, or to create45

other kind of resources. Typically such resources possess two crucial attributes46

that affect the behavior of the individuals who exploit them. That is to say, what47

one individual uses from them subtracts from another individual from its use,48

but at the same time, it is highly difficult to exclude others from using them. A49

high degree of subtractability of use together with a high degree of difficulty of50

excluding potential beneficiaries led to social dilemmas in terms of cooperation.51

In the literature, these resources that share the attribute of substractabiliy with52

private goods and difficulty of exclusion with public goods are termed common-53

pool resources, and they are a paradigm that puzzles the human behavior; the54

unselfishness over the immediate material self-interest, reflection over instincts55

and other factors that enter into the picture.56

More precisely, the joint use of common-pool resources, such as fisheries,57

forests, lakes, and groundwater basins may lead toward an over-exploitation58

when involved people are pursuing their own interests. There are diverse ele-59

ments at play when it is about the common-pool resources issue, which are in60

fact what makes it complex to account for successful organization by all involved61

individuals. Nonetheless, the core of the problem is captured in the literature as62

a social dilemma. And not surprisingly, non-cooperative game theory comes into63

play as a useful starting point. In other words, owing to the free overuse of a64

common-pool resource and the fact that individually optimal behavior produces65

a socially and individually suboptimal result, the individuals end up depleting66

the resource. Such situation generates a problem that can be formalized as so-67

cial dilemma game.1 Under this approach, individuals are rational and try to68

maximize their utilities which predicts a non-cooperative outcome. Individuals69

profit by exploiting the resources as much as they can without caring about70

others. Nevertheless, Gardner, Ostrom, and James M Walker (1990), Ostrom71

et al. (1994) challenge this argument. They provide evidence from field studies72

and experiments where people actually steer away from the individual outcome.73

Although it is admitted that cases of unsuccessful cooperation exist, Janssen74

and Ostrom (2006). And actually situations of both type of outcomes are still75

evident nowadays. Such is the case of some communities in Mexico.76

On one hand, there is the recurring problem of water management that face77

some dwellers of a touristic village called Tamul in the state of San Luis Potośı.78

This small village is well known for its natural landscapes and waterfalls. People79

there live off the land and tourism. One of the main activities related to the land80

is the sugar cane growth, cutting practices, milling and raw sugar processing.81

1. In a social dilemma game there is a strong interdependence between individual
outcomes and other outcomes, people, by pursuing immediate-self interest, can harm
their owns group’s interest Liebrand (1983).
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Not surprisingly, the use and management of water is a big issue there. Mainly82

because the water that is used to irrigate the crops comes from the rivers and83

falls, which, at the same time, are the major tourist attraction. In this place,84

since there is no way of reaching the big fall by walking but by boating, there is85

a group of boatmen that make a living of this. Over the last three years, this fall86

has run out of water periodically because of the excessive extraction for irrigation87

of the great cane fields. This situation has led the boatmen committee to lodge a88

complaint with local authorities (State Water Commission). Both parties came to89

an agreement. During holidays, the Water Commission agreed to cut off the water90

supply for irrigation proposes, whereas during other periods they determined91

what they call tandeo (distribution of irrigation water by turns). Nonetheless,92

this has not been respected in full, and not authorized water diversions have93

been spotted. Thus the common pool resource problem is still proving hard to94

manage. Even in presence of a an agreement, it is not fulfilled.95

On the other hand, in the State of Oaxaca, again in Mexico, there is a unique96

legally recognized program which enables its municipalities2 being ruled by tra-97

ditional governance practices. The so-called usos y costumbres program coexists98

with formal institutions in certain municipalities with high indigenous popula-99

tions. Among other aspects, this traditional governance institution has a system100

called cargo or tequio to solve collective actions and sanction those who refuse101

to cooperate in activities for the common good. They call tequio to a charge or102

an assignment for a member or group of members of the community. Within this103

system, it is of particular interest how they manage common resources such as104

the water. As it is mentioned in Diaz-Cayeros, Magaloni, and Euler (2009), in-105

digenous members form The Water Committee is in charge of monitoring water106

use and well’s reserves, punishing wasteful practices as well as fixing water pipes.107

Some of the punishments include fines, cut-offs of water supply or even physical108

punishment. Such practices, however, differ from other indigenous communities3.109

In this connection Magaloni, Dıaz-Cayeros, and Euler (2018) demonstrate that110

communities ruled by traditional governance practices offer more effective provi-111

sion of local public goods (including common pool resources, such as water from112

wells) than equally poor communities ruled by political parties.113

As I said, the issue of the common pool resources is not uncomplicated,114

and many factors come into play. Studying them separately is useful to grasp115

the problem and to devise solutions. Cooperative game theory and formation116

of coalitions approach include factors that the standard non cooperative game117

theory disregards. The possibility of involved individuals to coalesce, to commu-118

nicate, and the size of groups are of particular interest in this work, since they are119

identified by empirical researchers as common factors that promote cooperation120

2. In Mexico a free municipality, idea arisen from the Mexican revolution, refers
to the basic entity of its political-administrative division. Each of their municipalities
possesses full autonomy trough its own legislative and executive power.

3. Indigenous population is diverse, so the Uses and costumbres program recognizes
this diversity and confers constitutionally traditional governance for each of the diverse
communities.
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and self-govern in common pool resources. In this sense, the work of Meinhardt121

(2012) is already an advancement. He sets the common-pool resources problem122

under the domains of cooperative game theory. He finds interesting results in123

terms of understanding the incentives to cooperation towards -expressed in co-124

operative game theory terms- the grand coalition; notwithstanding, he does not125

consider cases in which people prefer to cooperate in groups that are smaller126

than the grand coalition. Therefore, my work proposes to explore this. The ra-127

tionale lies on answering the question of what coalition patterns can be found in128

a common pool resources setting. The paper proceeds as follows, in section two129

I present the framework of the common pool resources and an overview of the130

common factors associated to cooperation. Section three deals with a baseline131

model of appropriation. Here I study, without introducing cooperative game the-132

ory tools yet, how grouping may be beneficial for the actors of the model. Also I133

study issues related to the size of population. Then in section four, I transform134

the strategic game model introduced in section three into a model in partition135

function form, so that I study some of the results of Parkash (2019) in relation136

to my model; this part is still in progress. Also, in this section I present some137

field cases where coalition formation have come up.138

2 Common-Pool Resources139

In his influential work, Samuelson (1954) divides goods into two kinds, pure140

private goods and pure public goods. According to him, the former is both141

excludeble and rivalrous whereas the latter is not. That is, under this classifica-142

tion, if the public good is supplied, no consumer can be prevented from consum-143

ing it, and the consumption of it by one consumer does not limit the quantity144

available for consumption by others. Nevertheless, such definitions were rejected145

by Ostrom (2010). She states that the Samuelson’s twofold classification is con-146

sist with a dual view of the organizational forms of society. First, that the market147

is the optimal institution for the production and exchange of private goods. And148

second, that the government is seen as the owner of a property organized by149

a public hierarchy. Then she goes deeper into this simplistic dual division and150

proposes, together with her collaborators4, additional modifications. First, to151

replace the term “rivalry of consumption” with “subtractability of use.” Sec-152

ond, to conceptualize subtractability of use and excludability to vary from low to153

high rather than characterizing them as either present or absent. Third, overtly154

to add a very important fourth type of good -common-pool resources- that155

shares the attribute of subctractability with private goods and difficulty of156

exclusion with public goods. And forth, to change the name of “club good” to157

“toll good” since many goods that share these characteristics are provided by158

small scale public as well private associations. In this sense, following Ostrom159

(2008), “common-pool resources are seen as sufficiently large that it is difficult,160

but not impossible, to define recognized users and exclude other users altogether.161

4. See Ostrom and Ostrom (1999)
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Further, each person’s use of such resources subtracts benefits that others might162

enjoy.” This new taxonomic modifications can be arrayed in Table 1, which for163

clarity contains some examples.164

Moreover, in the literature, the common-pool resources are further classified165

into two types. Namely, open-access resources and common-property resources,166

in opposition to private property resources. The former are such that property167

rights are held by community of individuals and may include the government and168

non-government organizations, and their use can be regulated in a variety of ways169

by a variety of institutions, Common and Stagl (2005). Following Tietenberg and170

Lewis (2018), Some common pool resources may admit property rights. However,171

such rights may be costly to enforce, so they are not exercised. In contrast, in172

open access resources not everything is subject to property rights. Here no one173

owns or exercises control over the resource. Anyone can enter freely to exploit the174

resource in a first-come, first-served basis . And no individual or group has the175

capacity or the legal power to restrict access. Such characteristic promotes a use176

it or lose it situation. Open-access resources have given rise to what has become177

known popularly as the “tragedy of the commons” —see Hardin (1968) and Lloyd178

(1833). In a contrasting manner, open-access resources may be over-exploited but179

common property resources need not suffer overuse and their allocation can be180

regulated in a way that avoids the tragedy. Here it is worth quoiting Elionor181

Ostrom’s distinction between that tragedy and the problem of commons:182

[T]he problem is that people can overuse, they [the sources] can be183

destroyed, and it is a big challenge to try to figure out how to avoid184

it. That is a problem, that is real. The tragedy is the way he [Hardin185

(1968)] expresses it, they cannot, ever, solve it. That is different.—It is186

inevitable and unconquerable. That is why he called it a tragedy. They187

were trapped... and the only way out was some external government188

coming in or diving it up into small chunks and everyone owing their189

own... Ostrom (2009).190

In essence, the difference lies in two aspects. From the outset, it is not merely191

a tragedy; instead, it is a problem that needs not be neither ineluctable nor192

ineludible. Second, there are different ways of avoiding it, one of them could193

be —although not necessarily the best—external entities. Thus studying what194

and how could be the best way of preventing the problem is a big concern195

and a matter of debate. In fact, as Janssen and Ostrom (2006) highlight, there196

are examples of both successful and unsuccessful efforts to govern and manage197

common-pool resources by governments, communal groups, cooperatives, vol-198

untary associations, and private individuals of firms Berkes (1989), Bromley et199

al. (1992), Katar et al. (1994), Singh, Ballabh, et al. (1996). That said, notice200

again that given the nature of the open accesses resources, the “tragedy” may201

emerge eventually. This does not mean that just open accesses resources are202

endangered by overuse. Every common-pool resource can face deterioration by203

unsustainable use, but the latter ones are more vulnerable.204
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Subtractability of Use

High Low

Difficulty of excluding
potential beneficiaries

High
Common-pool resources:
groundwater basins, lakes, irrigation
systems, fisheries, forests.

Public goods: peace and security
of a community, national defense,
knowledge, fire protection, weather
forecasts.

Low Private goods: food, clothing, automobiles.
Toll goods: theaters, private clubs,
daycare centers.

Table 1. Taken from Ostrom (2010).

2.1 Appropriation and The Nature of Common-Pool Resources205

In the same line of Plott and Meyer (1975), the process of withdrawing units206

from any kind of common pool resource is termed appropriation, and thus the207

person who withdraws such units from it is, accordingly, an appropriator. Fol-208

lowing Ostrom et al. (1994), the problems that appropriators face can be studied209

separately. They cluster them into two types, appropriation and provision. In the210

former, there is an assumed production relationship between yield and level of211

inputs. Here the problem to be solved is how to allocate equitably that yield, or212

input activities to achieve it. Appropriation problems deal with the allocation213

of the units of extraction of the resource as a flow. More specifically, the prob-214

lem has to do with the following aspects. One, the quantity of resource units215

to be appropriated, or the establishment of the efficient level of input resources216

necessary for obtaining that flow of units of the resource. Second, timing and217

location of appropriation as well as the technology for appropriation. On the218

other hand, the provision problems deal with the creation, maintenance, and219

the improvement of productive capabilities of the resource as well as avoiding its220

depletion or destruction. Here the units of use of the resource are seen as stock.221

Notice that in real world situations a common pool resource may be complex222

and exhibit problems of appropriation and provision. However, it is useful to223

study both problems separately. In this work, I focus on the former.224

In this respect, according to Gardner, Ostrom, and James M. Walker (1990),225

there are four necessary conditions to produce a common-pool resources dilemma,226

and more notably, to distinguish it from a simple common-pool situation. To be-227

gin with, resource unit substractability is strongly linked to the definition of a228

common-pool resource. This condition tells, as it was already mentioned, that229

a resource unit extracted, harvested or withdrawn by one individual makes it230

unavailable for another one. Such extracted unit —the argument goes —is pos-231

sible since the resource provides a never-ending flow of units over time as long232

as the degree of appropriateness do not outweigh the degree of replacement or233

regeneration of it. Also, in cases where there is not a replacement, the resource234

is exhaustible, and then one cannot talk about a flow but just of a stock of235

it that is gradually depleted. The second condition is the existence of multi-236

ple appropriators, the resource is withdrawn by more than one person or teams237

of individuals. Third, sub-optimal outcomes, which means that the appropria-238

tors’ strategies yield sub-optimal outcomes given a configuration of their own239
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attributes, the market conditions, technology, and the physical system. Forth is240

constitutional feasible alternatives. Here the authors touch upon the existence of241

a set of coordinated strategies that are more efficient than current decisions, and242

that they are constitutionally feasible given the current institutional and con-243

stitutional arrangements. Within this condition, in turn, I find that a sufficient244

condition for such set of feasible alternatives is the existence of a Pareto-optimal245

set of coordinates strategies that are individually advantageous to the involved246

appropriators.247

As the reader can infer now, the definition of a common-pool resources to-248

gether with conditions one and two lead to what is called common-pool resources249

situations. And whereas conditions three and four are necessary for a dilemma.250

There is not a dilemma if sub-optimal outcomes does not come up for at least a251

setting made of the factors of condition three. Also, a dilemma do not manifest252

when a set of constitutional feasible strategies do not produce a better outcome253

for appropriators.254

2.2 Common Variables Involved in Common Pool Resources255

From the point of view of the experimental psychological research, Kopelman,256

Weber, and Messick (2002) identify nine variables that influence cooperation in257

common dilemmas, to wit, social motives, gender, payoff structure, uncertainty,258

power and status, group size, communication, causes, and frames. In turn, they259

categorize such variables into individual differences (stable personal traits such260

as social motives and gender) and situation factors (the environment). The latter261

category is further differentiated into task structure (which orderly is composed262

by the decision structure and the social structure) and the perception of the263

tasks or perceptual factors (causes and frames). Within the decision structure264

there are the variables of payoff structure and uncertainty, whereas the social265

structure category includes the variables power and status, communication, and266

group size. These two last variables are particularly interesting for the purposes267

of my work. The size of the group, and the ability of people to communicate268

with one another are fundamental elements highly related to the limitations of269

the standard game theory.270

Ostrom (2015) shows cases of the study of common-pool resources use, espe-271

cially of successful groups avoiding the Nash outcome. One of the crucial condi-272

tions she detects, under which coordination succeeds, has to do with the number273

of individuals involved. Also Ostrom, Walker, and Gardner (1992) discuss a se-274

ries of experiments approaching issues of individual behavior under common-pool275

situations. They set up experiments so as to gain a general explanation over how276

communication and punishing mechanisms on the group level influence individ-277

ual behavior. Once they introduce these elements into the mix, they observe278

that the outcomes of the experiments generate behavior clearly inconsistent to279

the predictions of non-cooperative game theory. Moreover, when individuals are280

allowed to communicate with each other, they achieve significant improvements281

from group interactions even in the absence of punishing mechanisms.282
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In this connection, group size and communication under a common-pool re-283

source context have been the object of investigation. In Kopelman, Weber, and284

Messick (2002) there is an interesting discussion of the experimental commons285

dilemmas literature regarding these two elements. According to them, two ex-286

planations of the effect of communication on cooperation, provided by Dawes,287

Van de Kragt, and Orbell (1990), are salient. First, group discussion enhances288

group identity or solidarity, and second, group discussion elicits commitments289

to cooperate. On the other hand, the group size issue has been highly a matter290

of debate. So far, there is no consensus on whether small size groups achieve291

more cooperative outcomes than the larger ones. The discussion presented in292

Kopelman, Weber, and Messick (2002) is not conclusive. In this line, Allison,293

McQueen, and Schaerfl (1992) explains that small groups are more motivated294

to divide resources equally than are members of large groups, whereas Agrawal295

and Goyal (2001) suggest that there is a curvilinear relationship between group296

size and successful collective action.297

On the other hand, Janssen and Ostrom (2006) highlight nine variables com-298

monly found in empirical studies related to self-governed resource use. Namely,299

information about the condition of the resource and expected flow ofbenefits and300

costs are available at low cost to the participants; second, appropriators plan to301

live and work in the same area for a long time; third, they are highly dependent302

on the resource; forth, appropriators use collective-choice rules that fall between303

the extremes of unanimity or control by a few; fifth, the group using the resource304

is relatively stable; sixth, the size of the group is relatively small; seventh, the305

group is relatively homogeneous; eighth, participants have developed general-306

ized norms of reciprocity and trust that can be used as initial social capital; and307

ninth, Participants can develop relatively accurate and low-cost monitoring and308

sanctioning arrangements.309

3 Model Description310

In this model, I study the problem of appropriation decision in a static envi-311

ronment with very basic rule settings. This model is taken from Falk, Fehr,312

Fischbacher, et al. (2002), which depicts the setting of the baseline common-313

pool resource experiments conducted by Walker, Gardner, and Ostrom (1990).314

The baseline game is as follows. Each appropritator i has an endowment of re-315

sources, wi, which in the symmetric case is e for everyone. All n players in the316

group decide independently and simultaneously how much they want to invest317

in the CPR. Individuals i′s investment decision is denoted by xi
5. The invest-318

ment decision causes a cost c per unit of investment but also yields a revenue.319

Although the cost is assumed to be independent of the decisions of the other320

group members, the revenue depends on the investment decisions of all players.321

More specifically, the total revenue of all players from the common-pool resource322

5. One interpretation of investment in this setting could be the time dedicated to
the common pool resource exploitation.
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is given by f(
∑
xj) where

∑
xj is the amount of total investment. For low lev-323

els of it, f(
∑
xj) is increasing in

∑
xj ,but beyond a certain level, f(

∑
xj) is324

decreasing in
∑
xj . An individual subject i receives a fraction of f(

∑
xj) ac-325

cording to the individuals share in total investment
xi∑
xj

. Thus, this model326

emulates an environment most closely parallel to that of a limit-access resource.327

Thus the total material payoff of i is given by:328

ui(xi, x−i) = e− cxi +

[
xi

x(N)

]
f(x(N)) (1)

where x−i = (x1, ...xi−1, ..., xn) and x(N) =
∑
i∈N xi. Formally, f is strictly329

concave and assume that f(0) = 0 and f ′(0) > c, and f ′(ne) < 0. Initially the330

investment in the common-pool resource yields positive returns [f ′(0) > c], but331

if the appropriators invest a sufficiently large number of resources, say q̂, the332

outcome is detrimental [f ′(q̂) < 0]. The yield from the common-pool resource333

reaches a maximum net level when individuals invest some, but not all, of their334

endowment in that resource.335

So individual i solves336

max
xi

ui(xi, x−i)

s.t. 0 ≤ xi ≤ e, i = 1, . . . , n.

Following,Ostrom et al. (1994), suppose that x∗i solves the constrained max-337

imized problem, and that ui(x1, . . . x
∗
i , . . . xn) is the maximal value. This gives338

one equation in n unknowns. Solve now for each individual i. Thus there are n339

equations in n unknowns. A solution to this system of equations is a Nash equi-340

librium.6 Now, since this game is symmetric in terms of endowments, strategies,341

and payoff functions; the wearisome problem of solving n simultaneous equa-342

tions in n unknowns can be circumvented.7 Thus, it is enough to solve for one343

individual i knowing that each solution will be the same for all of them. Now,344

given the assumptions on f , and for large enough values of e, there is an interior345

solution that satisfies the first order condition,346

−c+
xi

x(N)
f ′(x(N)) +

x(N)− xi
(x(N))2

f(x(N)) = 0. (2)

6. At the Nash Equilibrium, all involved individuals maximize simultaneously their
respective utility. To see this, suppose that long as all other individuals are maximizing
at a Nash equilibrium, the problem that individual i faces becomes

max
xi

ui(x
∗
i , ..., xi, ...x

∗
n)

s.t. 0 ≤ xi ≤ e, i = 1, . . . , n.

which is solved by x∗i .
7. Finite symmetric games have symmetric equilibria Nash (1951).
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Introduce the symmetry assumption, so x(N) becomes nx∗i . Plug it into (2)347

yields,348

−c+
1

n
f ′(nx∗i ) +

n− 1

n2x∗i
f(nx∗i ) = 0 (3)

In a nutshell, the interpretations of this equilibrium are the standard ones.349

For a rational player the solution that maximizes the problem is unique, so350

different choices of x∗i will be sub-optimal, and there are no incentives for a351

rational player to deviate from this outcome. Now, let me calculate the social352

optimum x∗(N), which is the unique solution maximizing the expression below353

subject to the constraint 0 ≤ x(N) ≤ ne.354 ∑
i∈N

u(xi) = u(x(N)) = ne− cx(N) + f(x(N)) (4)

so the first order condition is355

−c+ f ′(x(N)) = 0 (5)

The marginal cost equals the marginal return from the common-pool re-356

source. It is the maximal yield that can be extracted from the resource in a357

single period (Ostrom et al. (1994)). Now comparing (5) and (3) the reader will358

realize that agent’s equilibrium behavior is not collectively optimal. It can be359

observed as well that the interior solutions of both maximization problems do360

not depend on the endowments. However, if they are not sufficiency large, the361

latter claim does not hold, and the solution for the maximization problems would362

be such endowments. Also, the fact that the Nash equilibrium does not depend363

on e implies that it does not account for the potential pressure over the resource364

that high levels of endowments may generate.365

Now, consider a specific form of the revenue function used by Walker, Gard-366

ner, and Ostrom (1990) in their experiments, which was based on Gordon (1954)367

classic model.368

f(x(N)) = ax(N)− bx(N)2

with c < a = f ′(0), and f ′(ne) = a − 2bne < 0. Recall, each player is369

endowment with e, and the cost per unit of exploitation is c. Thus the payoff of370

individual i is the next.371

ui(xi, x−i) = e− cxi +

[
xi

x(N)

]
[ax(N)− bx(N)2] (6)

372

ui(xi, x−i) = e+ (a− c)xi − xibx(N)

Say that (a− c) = α , so373

ui(xi, x−i) = e+ αxi − xibx(N) (7)
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Proposition 1 (Nash Equilibrium) If every agent acts individually and makes374

her own best decision given of all other agents, the optimal allocation xi given375

the allocations of the rest of the agents is the symmetric Nash Equilibrium stated376

by x∗i =
α

b(n+ 1)
377

Proof (Nash Equilibrium). Maximize (7) w.r.t to xi and follow the procedure as378

equation (2) and (3).379

Likewise,380

Proposition 2 (Social Optimum) If all involved agents act cooperatively the381

social optimum or the Pareto optimum allocation is given by
α

2b
382

Proof. From (4) and (5) and given the function f(x(N)) = ax(N)− bx(N)2, it383

follows that384

−c+ a− 2bx(N) = 0
385

α− 2bx(N) = 0
386

x∗(N) =
α

2b
387

In a single period, this represents the maximal yield that can be extracted388

from the resource. More than that, the return decreases.389

Now the payoff the players get as a group implementing the social optimum390

is391

ne+
α2

4b
(8)

whereas the payoff of the symmetric Nash equilibrium group investment,392

n

n+ 1

[α
b

]
, is393

ne+
α2

b

n

(n+ 1)2
(9)

Notice that the former is greater than the latter since 1/4 > n
(n+1)2 as long394

as n > 1. Also, when the group investment is twofold the social optimal, i.e.395

(α/b), the group payoff is just ne, which means that there is no return from the396

common pool resource. Moreover, this value is also reached when implement-397

ing the symmetric Nash equilibrium group investment, the number of involved398

individuals increases, limn→∞

(
n

(n+1)
α
b

)
= α

b .399

Let me present now, for the sake of the argument, a numerical example8 at400

works401

8. Taken fromFalk, Fehr, Fischbacher, et al. (2002)
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Example 1 Say that e = 10 and c = 5, and the total revenue is given by402

f
(∑

xj

)
= 23

∑
xj − 0.25

(∑
xj

)2
(10)

Thus the material payoffs are:403

ui = 10− 5xi +

[
xi∑
xj

] [
23
∑

xj − 0.25
(∑

xj

)2]
(11)

ui = 10 + 18xi − 0.25xi
∑

xj (12)

Now, to find the optimal individual case, maximize equation (4) with respect to404

xi . The first order condition is405

18− 0.5xi − 0.25
(∑

xi − xi
)

(13)

Again we have now n first-order conditions for the n individuals that would406

need solving, so introduce the symmetry assumption that
∑
xi = nx∗i and plug407

into (13) to get408

18− 0.5x∗i − 0.25(nx∗i − x∗i ) (14)
409

x∗i =
18

0.5 + 0.25(n− 1)
=

18

0.25(n+ 1)

Now, we can compare this equilibrium allocation to the investment that would410

maximize the overall group yield from private and collective investment. The411

overall output for the group is given by (wit x as the vector of the individual412

allocations to the CPR)413

π(x) = 10n+ 18
(∑

xi

)
− 0.25

(∑
xi

)2
(15)

There is a unique solution maximizing this expression, that can be found from414

the first order condition,415

18− 0.5
(∑

xi

)
= 0 (16)

416 ∑
xi = 36

Comparing equation (14) and equation (16), I find that they yield different re-417

sults. The individuals equilibrium behavior is not collectively optimal.418

In the experiments mentioned in Ostrom (2010), the initial resource endow-419

ment were tokens that the subject could allocate to the common-pool resource.420

For their experiment they use eight individuals. Now, the game theoretic outcome421

involves substantial overuse of a resource while a much better outcome could be422

reached if the subjects were to reduce their joint allocation. The prediction of423

the non-cooperative game theory was that subjects would invest according to424

the Nash equilibrium —8 tokens each for a total of 64 tokens. However, sub-425

jects could earn considerable more if they reduced their allocation down to a426
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total of 36 tokens in the resource. Observe the payoffs for both, group optimal427

investment and symmetric Nash equilibrium group investment:428

– Group payoff under the NE
∑
ui = 10(8) + 18(64)− 0.25(642) = 208429

– Group payoff under the social optimum:
∑
ui = 10(8)+18(36)−0.25(362) =430

404431

However, the result of those experiments lead that people move away from the432

individualistic outcome. In this line, many communities are able to spontaneously433

develop their own approaches to manage common-pool resources. See several434

cases in Ostrom (2015) where people craft arrangements in a fashion different435

from the standard predictions are presented. Now one way to conciliate theory436

and practice in this subject, at least partially, is to approach the problem under437

the scrutiny of groups and coalition theory. Formation of groups that act as438

a single entity might shed light on the coordination of players and overcome439

individualistic outcomes. In the following sections, I explore this idea.440

3.1 Groups and Individual Behavior441

Suppose there is a group S of players smaller than the whole community willing442

to reduce its investment in the common pool resource to the one predicted by the443

social optimum. This group raises awareness about the benefits of cooperation.444

This comes up as something that which happens of itself, without any coercion445

but the will. That means that its members are willing to reduce the exploitation446

of the resource while the others are acting individually. Recall that the social447

optimum is x∗(N). Suppose that it can be split out by the number of individuals448

involved in the game, so
x∗(N)

n
:= x∗∗i , but that this share is used just for the449

people in the group. If it was the case, the utility of individuals of group S of450

implementing x∗∗i while the rest remain implementing x∗i of the original game,451

is the next one,452

∑
i∈S

ui(x
∗∗
i , x

∗
−i) = |S|e+

[∑
i∈S

x∗∗i

][
f(
∑
i∈S x

∗∗
i +

∑
j /∈S x

∗
j )∑

i∈S x
∗∗
i +

∑
j /∈S x

∗
j

− c

]
(17)

contrasting with the utility that individuals of group S when its members453

and the others implement the original NE,454

∑
i∈S

ui(x
∗
i , x
∗
−i) = |S|e+

[∑
i∈S

x∗i

][
f(
∑
i∈S x

∗
i +

∑
j /∈S x

∗
j )∑

i∈S x
∗
i +

∑
j /∈S x

∗
j

− c

]
(18)

where |S| stands for the carnality of group S. Which will be willing to im-455

plement the social optimum if and only if456 ∑
i∈S

ui(x
∗∗
i , x

∗
−i) >

∑
i∈S

ui(x
∗
i , x
∗
−i) (19)



14 E. Ordaz.

Now, since the individuals who join to the group S are exploiting the resource457

at a level proportional to the social optimum, and the other non-cooperative458

individuals are investing at levels according to the NE, we have that
∑
i∈S x

∗∗
i =459

|S|
[
x∗(N)

n

]
. Thus inequality (19) becomes,460

|S|
[
x∗(N)

n

]f
(
|S|
[
x∗(N)
n

]
+ [n− |S|]x∗j

)
|S|
[
x∗(N)
n

]
+ [n− |S|]x∗j

 > |S|x∗i

[
f
(
|S|x∗i + [n− |S|]x∗j

)
|S|x∗i + [n− |S|]x∗j

]
(20)

After some algebra, (20) is expressed as461

x∗(N)

f
(
|S|
n

[
x∗(N)− nx∗j

]
+ nx∗j

)
|S|
n

[
x∗(N)− nx∗j

]
+ nx∗j

 > f(nx∗i ) (21)

Now I plug the function of Walker, Gardner, and Ostrom (1990) and study462

that the inequalities (19) trough (21), so I arrive at the following.463

Proposition 3 Given the number of individuals n involved in the common pool464

resource problem, forming a group S such that exploits the resource at levels465

dictated in proportion to the social optimum x∗∗ yields a greater return for its466

members rather than not forming it as long as |S| approaches to n and the467

non-members remain acting individually. Whenever |S| → n > 1, cooperative468

individuals have incentives to form such group.469

Proof. The utility of the potential group S of implementing the social optimum470

while the other the NE is471 ∑
i∈S

ui(x
∗∗
i , x

∗
−i) = |S|e+

|S|
n

( α
2b

)[
α− b

[
|S|
n

( α
2b

)
+ (n− |S|) α

b(n+ 1)

]]
(22)472

= |S|e+
α2|S| (n|S|+ 2n− |S|)

4b(n+ 1)n2

whereas the utility of coalition S of implementing the NE just like the others473

is474

∑
i∈S

ui(x
∗
i , x
∗
−i) = |S|e+ |S|

(
α

b(n+ 1)

)[
α− b

[
|S|α

b(n+ 1)
+

(n− |S|)α
b(n+ 1)

]]
(23)

= |S|e+
|S|
b

[
α

(n+ 1)

]2
Now take475

lim
|S|→n

∑
i∈S

ui(x
∗∗
i , x

∗
−i) = ne+

α2

4b
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and476

lim
|S|→n

∑
i∈S

ui(x
∗
i , x
∗
−i) = ne+

n

(n+ 1)2
α2

b

so, as I showed before, the latter value is smaller than the former one.477

Remark 1 (Large n). The result holds as n gets large, and |S| gets close to it.478

lim
|S|→n→∞

∑
i∈S

ui(x
∗∗
i , x

∗
−i) =∞+

α2

4b

and479

lim
|S|→n

∑
i∈S

ui(x
∗
i , x
∗
−i) =∞

In words, the group S has to be a little smaller than the entire population480

(understood as n) in order to be effective. If there is no way of forming a group in481

which all members be included, a smaller group will be enough. Notice however482

that if n gets large whereas the group |S| remains with a fixed size, then the483

cooperative individuals (individuals interested in forming the group) will have no484

incentive to stay in, since for a larger number of n the return that the common-485

pool resource yields is virtually null for either cases (using the social optimum486

or the Nash equilibrium). In addition to that, there are as well other conditions487

related to the size of the group in which the formation of the group may not be488

robust.489

Proposition 4 For a given numbers of involved individuals, n, not too large,490

if |S| =
2n

n+ 1
implementing the social optimum yields the same return than491

implementing the Nash equilibrium. But if |S| is greater strictly than this fraction492

and n does not get large, there are incentives to form the group.493

Proof. See the appendix494

When the number of individuals n involved in the exploitation of the resource495

is not too large, it is sufficient that more than two people form a group to obtain496

better gains. In other terms, when |S| makes around
2

n+ 1
of n, forming a group497

in terms of payoffs is not too attractive. Notice, however, that both propositions498

three and four depend strongly upon of the size of n. This is in line with the499

current debate regarding the size of the group and cooperation in common pool500

resources. As it was already mentioned, when the size of the group is relatively501

small, cooperation, which translates into self-manage of the resource, is easier502

to achieve (Wilson and Thompson (1993), Franzen (1984), Fujiie, Hayami, and503

Kikuchi (2005)). Nevertheless, when the size of n is too big, I found that a group504

has to be of a size barely smaller than it, so that there are incentives to group505

(at least until a certain point). That means that the number of people interested506

in cooperating should be sufficiently big in a big population. Although, under507
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big populations, it may happen that the common pool resource does not resist508

it even under self-managing. As I set forth before, the social optimum does not509

depend upon n, but it does when I split it out by the number of population and510

then I assign a correspond share of it to the group S. Thus the greater the size of511

the population and the greater the size of S the fewer the individuals are going to512

appropriate. In this sense for big populations exploiting at low levels yields very513

lower returns which implies that monetary inducements for cooperation vanish.514

Now assume that the individuals interested in cooperating disregard the so-515

cial optimum, but still are willing to form a group. Thus they decide to imple-516

ment that level of appropriation investment that maximizes their joint utility517

taking as given the individual investment of the non cooperative individuals. In518

other words, assume that players who are not interested in cooperating chose to519

implement the level dictated by the Nash Equilibrium whereas the cooperative520

players joint to a group that implement a optimum group investment given the521

individualistic behavior of the others. This is going to happen if the following522

holds523 ∑
i∈S

ui(x
∗∗
i , x

∗
j /∈S) ≤

∑
i∈S

ui(x
∗
S , x

∗
j /∈S) (24)

where xS :=
∑
i∈S xi and x∗S ∈ arg max

∑
i∈S ui(xS , x

∗
j /∈S), and x∗j /∈S is the524

individual NE investment decision of every one of the members outside the group525

S. Expressly, group S maximizes wrt to xS given that the others are choosing526

individually their level of investment.527

so,528

∑
i∈S

ui(xS , x
∗
j /∈S) := uS(xS , x

∗
j /∈S) = |S|e− xS

[
α− b

[
xS + (n− |S|)x∗j /∈S)

]]
(25)

Since x∗j /∈S = α
b(n+1) , thus529

uS(xS , x
∗
j /∈S) = |S|e+ αxS − bx2S − xS(n− |S|) α

n+ 1
(26)

Now, maximize (27) w.r.t. xS . F.O.C. for an interior solution.530

α− 2bxS −
α(n− |S|)

(n+ 1)
= 0

thus,531

x∗S =
α

2b

[
1 + |S|
n+ 1

]
(27)

Plug (28) into (27),532

uS(x∗S , x
∗
j /∈S) = |S|e+

(
1

b

)[
α(|S|+ 1)

2(n+ 1)

]2
(28)

Thus I have that533
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Proposition 5 For a n not too large, a group S smaller than it that acts as534

a single entity will prefer to exploit the resource at the level that maximizes the535

sum of the utilities of its members (group optimum) rather than the social opti-536

mum level given that the outside individuals act individually. But if n gets large,537

the associate return of both cases will tend towards the same return; although538

depending on |S|, it is either too great or just |S|e. When |S| approaches n, the539

former case happens, but when it is fixed, the latter comes about.540

Proof. See Appendix541

Again, forming a group is advantageous for individuals with a sense of co-542

operation. In this context, the fact that they are able to coordinate and decide543

upon the level of appropriation brings about greater gains when implementing a544

group optimal level of appropriation. This argument, nevertheless, is untenable545

when the number of appropriators is great. In the extreme cases in which the546

number of individuals exploiting the resource is too large, the pressure over it547

is higher as well, so its return goes to zero. Thus the utility the players get by548

grouping is that of summing up their endowments, which does make sense, since549

the aim of jointing is to coordinate the management of the resource so that ob-550

tain greater gains. Then when a population is considerably large, a cooperative551

group is not binding or simply fizzle out.552

So far I just studied how the formation of a group may be beneficial. However,553

studying the problem of common pool resources under this perspective implies554

studying how more solid and complex groups come about. In this sense, a deeper555

understanding on formation of groups in called. Properly said, a group bestowed556

on individual character of its own becomes now the subject of study. In the next557

lines I explain this insight better.558

4 Coalitions and Cooperative Game Theory559

As I mentioned before in section 2.2, there are common variables that helps560

to explain cooperative behavior. In this sense, cooperative game theory and561

coalition formation accounts communication mechanism, bargain, homogeneity562

of the participants, and group size within its framework. What follows now is the563

relation of common pool resources and coalitions through some cases of study. I564

present a cooperative model in partition function form derived from the strategic565

game of the common pool resources. In addition to that, in the last section there566

is a game of formation of coalitions, which I apply to the case of common pool567

game.568

4.1 Coalitions and Common Pool Resources569

Consider the case where players are able to coalesce in a sense beyond of a570

mere group. That is, again cooperation between them is permitted, and binding571

agreements can be implemented. That said, the analysis of common pool resource572

situations changes. The players are considered to negotiate, they can group now.573
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There are different possibilities in terms of what groups may come up with.574

The basic entities of study now are those groups, which more precisely in the575

literature are termed as coalitions. In this sense, players may be involved in a576

bargaining process which enables them to adopt binding agreements. If players577

perceive that by cooperating with other players they receive more than what578

they are able to get by themselves, they might want to enter into negotiations579

the latter ones. Otherwise, they pursue an alternative option. The result of such580

negotiation processes aim at some stable coalitions in which players have no581

incentives to deviate from an agreement. Thus the aim in this section is to582

approach the gains of cooperation in a common pool resources environment583

under this approach.584

In this connection, the literature shows cases where it studied the effect of585

groups size in the management of common pool resources as well as cases where586

people actually have come up with coalitions. Wilson and Thompson (1993)587

study the reasons behind a breakdown in productivity of communally held Mex-588

ican lands called ejidos.9 They attribute such reasons to a deterioration in prop-589

erty management at the community level. According to this work, rights, duties,590

functions, and obligations of individual herders had not been clearly specified or591

enforced by ejido authorities in that time. Nevertheless, failure of group manage-592

ment —they argue—had led to the formation of coalitions within smaller groups593

where cooperation is assured and benefits are enjoyed under severe ecological594

conditions. They call “compensating coalitions” of the ejidos in the sense that595

they recognize the failure of the ejido, and in response, they try to compensate596

it by forming a group with enough structure to make a collective decision that597

benefits its members. The uncertainly of others’ behavior is reduced in these598

coalitions, which enables them to reach a level of cooperative individuals short599

of the full cooperation level.600

Besides that, Perez-Verdin et al. (2009) conduct an empirical study in which601

they test the relationship between common-based property regimes and the con-602

servation of natural resources. Specifically, they study the effect of group size and603

heterogeneity upon the performance of ejidos to protect their forest resources604

in northern Mexico. What they actually arrived at was that, in general, group605

size and heterogeneity had no significant effects on the presence of deforested606

conditions. According to them, deforestation is driven by resource-specific char-607

acteristics, such as location and soil productivity, not by ejidos’ characteristics,608

such as total area or number of members. In this vein, Poteete and Ostrom609

(2004) approach the research of the International Forestry Resources and In-610

stitutions related to, among other aspects, the interrelations among group size,611

heterogeneity, and institutions. They posit that actually group size and some612

forms of collective action has to have a non-linear relationship.613

9. An ejido combines communal ownership with individual use. It consists of cul-
tivated land, pastureland, other uncultivated lands, and the fundo legal (town-site)
Britannica (2011). The ejidos controls a substantial share of the Mexican agricultural
land.
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On the other hand, in the field example exposed in Gardner, Ostrom, and614

James M Walker (1990) concerning a fishery in Sri Lankan, in addition to the615

analysis of the dynamic adjustment from a partially solved common-pool re-616

sources dilemma to one of failure the authors describe, I want to highlight how617

in certain situations the formation of groups emerge as a way of managing the618

exploitation of a resource. Let me explain. People in this small fishing village619

used beach seines as a technology (to catch fishes), but as each net was expensive620

and at least eight men were needed to shot and draw it ashore, they decided to621

split the ownership of a single net into eight shares. Then they used approxi-622

mately twenty jointly owned beach-seines. And each share was single-handedly623

worked by a fisher, and the catch was divided equally among the eight owners.624

Observe how in this case, factors such as the characteristics of the resource (size625

and boundlessness of it) as well as of the used technology (the size, weight and626

costs of the beach seine) led people to from groups to devise a way of exploitation627

collectively (at least until a certain point).628

4.2 The Coalition Approach Model629

Let me now introduce the cooperative model of the common pool resources630

problems of appropriation. As I said, the analysis changes slightly since the631

entity of study are coalitions. Notice that this does not mean I disregard cases632

in which individuals just want to remain single. Thus, I set the problem of633

the common pool resources into a particular form of cooperative games10: the634

partition function form. This form takes into account possible externalities that635

coalitions impose on each other (recall: what I subtract from the resource you636

can not). Basically, by setting the common pool resources issue under coalitional637

structures I explore the formation of coalitions and the allocation of coalition638

worth to its members. In this sense, I study situations in which extreme cases639

of cooperation (no one forms a coalition or all players join) may or not arise as640

well as intermediate cases.641

4.3 The Partition Function and the γ-Core642

Even when the reader is familiarized already with what a coalition is, I define it643

formally for the sake of the argument and give some clarifications of it.644

Definition 1 (Coalitions) Let N be, again, the finite set of players. Formally,645

a group of players S ∈ N is called a coalition. Specifically, ∅ is denoted as the646

empty coalition and the player set N itself is denoted as the grand coalition. And647

the collection of all coalitions is denoted by the power set N := 2N648

10. A cooperative game is also called n-person transferable utility game, since it is
assumed that there is a commodity, say money, that players in a coalition can freely
transfer among themselves. This assumption implies that disregarding of how the coali-
tion payoff is split out, its members enjoy the same utility, since the payoffs are given
to coalitions and not for individual players.
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According to Gilles (2010), a coalition has to be thought of in a broader sense.649

It has a purpose and is assumed to be able to formulate and execute collective650

action. This entails that the members of a coalitions are provided with a col-651

lective decision mechanism or a governance structure. Accordingly, players are652

allowed to plan, formulate and execute collective actions trough institution, be-653

havioral norms, and communication structures. In this light, this argument ties654

together with the strands advanced in Ostrom (2010) and Ostrom (2002). These655

studies posit that participants involved in a common-pool resources situation do656

undertake efforts to design their own governance arrangements and that sub-657

stantial empirical evidence underpins it. Here is why -as I see it- it is interesting658

to approach the common-pool resources issue under a coalition approach.659

The Partition Function Form. Following Parkash (2019), given a partition660

of the total player set into coalitions, a partition function Thrall and Lucas661

(1963) assigns a payoff to each coalition in the partition. A strategic game can662

be converted into a partition function if each induced strategic game in which663

each coalition in the partition becomes one single player admits a unique Nash664

equilibrium. Th The common pool game actually fulfills this condition.665

Formally, a set P = S1, ...Sm is a partition of N if Si ∩ Sj = ∅ for all666

i, j ∈ 1, ...m, i 6= j, and
⋃m
i=1 Si = S. The worth of coalition Si is given by667

v(Si;P ) ≥ 0, which denotes the Nash Equilibrium payoff of coalition Si in the668

induced strategic game in which each coalition Sj , j = 1, ...,m, becomes one669

single player, i.e. within the coalition the individual strategies are selected so as670

to maximize the payoff of the coalition: the sum of the payoff of its members.671

Then, (N, v) denotes the partition function form of the strategic game (N,X, u)672

where X = Πi∈NXi is the set of strategies profiles, Xi is the strategy set of673

player i, so Xi = [0, wi] with wi > 0 being the endowments for each players, and674

u = (ui, . . . , un) is the vector of payoff functions, and ui is the payoff function675

player i. A strategic profile is denoted by x = (x1, . . . , xn) ∈ X. Here I am going676

to deal again with the symmetric case, so Xi = {xi ∈ R+ : 0 ≤ xi ≤ e}.677

In line with Parkash (2019), I have now a partition function generated from678

the underlying common pool resources strategic game, which implies two things.679

First, the grand coalition has at its disposal a broader set of strategies, that is680

[0, ne], which means that it can choose at least the same strategies as the players681

can in any game induced by a partition. In this sense, the grand coalition is an682

efficient coalition, formally v(N ; {N}) >
∑m
Si∈P v(Si;P ),∀P = {S1, . . . , Sm} 6=683

{N}. Second, given a partition, the members of a coalition has the possibility684

to decide on not to form it. How? Notice that each player of a coalition has685

the strategy set [0, e], thus the coalition strategy set is [0, |S|e], which means686

that the members of this coalition can choose the same strategies as they were687

singleton in the partition. Whenever the players choose such strategies given the688

strategies of the others, the coalition Si does not form.689

The γ-Core One important concept in cooperative games is that one of the690

core. It assigns to each cooperative game the set of payoffs that no coalition691
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can improve upon by any coaliton. If a payoff does not belong to the core, one692

should not expect to see it as the prediction of the theory if there is full coop-693

eration Serrano (2015). So far in the literature related to common pool games694

in characteristic function have studied classical core concept such as the α-core695

and β-core Meinhardt (2012), but other solution concepts have not explored in696

common pool resources in partition function form. Here, I start out my analysis697

with the one proposed by Parkash 2019, it is the γ-core.698

Definition 2 (Feasible payoff) Given a partition function game (N, v), a pay-699

off vector (zi, ..., zn) is feasible if
∑
i∈N zi = v(N ;N).700

A feasible payoff is the division of the grand coalition.701

Definition 3 (γ-core) The γ-core of a partition function (N, v) is the set of702

feasible payoff vectors (z1, ..., zn) such that
∑
i∈S zi ≥ v (S; {S, [N \ S]}) for all703

S ⊂ N .704

where [N ] and [N \ S] indicate the finest partitions of the N and N \ S705

respectively.706

Now since I assumed that the common pool game is symmetric in the sense707

that individuals have the same costs of extraction, same endowments, and same708

utility functions; this implies that its partition function form game is also sym-709

metric, and the the worth of a coalition will depend on its cardinality. In other710

words, given a partition, two or more coalitions with the same number of mem-711

bers each will get the same worth.712

Definition 4 (A Symmetric Partition Function Game) A partition func-713

tion game is symmetric if for every partition P = {Si, . . . , Sm}, |Si| = |Sj |, then714

v(Si;P ) = v(Si;P )715

Moreover, the common pool game partition function form (keeping the same716

quadratic function of section three) belongs to a particular class of symmetric717

partition function games; that is to say, those ones where the grand coalition is an718

efficient partition, and larger coalitions in each partition have lower per-members719

payoffs. To see the latter claim, say that I have a partition P = {Si, . . . , Sm},720

and that coalition |Si| = |Sj |, i, j ∈ 1, 2, . . . ,m so the worth of both coalitions721

under the common pool game studied is722

v(Si;P ) = |Si|e+
α2

b(|P |+ 1)2
= |Sj |e+

α2

b(|P |+ 1)2
= v(Sj : P )

but if |Si| < |Sj |, thus the lower per-member payoffs are such that723

v(Si;P )

|Si|
>
v(Sj ;P )

|Sj |
.
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Given that the common pool game in partition function form is symmetric724

and fulfills the above, I know from Parkash (2019)11 that it has a non-empty725

γ-core as long as the grand coalition is an efficient partition. And that the726

feasible payoff vector with equal shares belongs to the γ-core and that the largest727

coalition in each partition is worse-off relative to this feasible payoff vector. I728

verify that effectively such claims are met.729

The feasible payoff vector with equal shares is (zi, . . . , zn), so, (29)∑
i∈N

zi = v(N ;N) = ne+
α2

4b

I check that this payoff belongs to the γ-core of this game. Which is the same as verifing∑
i∈S

zi ≥ v (S; {S, [N \ S]})∀S ⊂ N, thus,

∑
i∈S

zi ≥ |S|e+
α2

b(n− |S|+ 2)2

|S|e+
|S|α2

4bn
≥ |S|e+

α2

b(n− |S|+ 2)2

since

0 <
1

(n− |S|+ 2)
2 ≤

|S|
4n

< 1

the inequality holds.

Now I verify that the largest coalition in each partition is worse-off relative to730

(z1, . . . , zn).731

11. See proposition 2 in Parkash (2019)
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Let P = {S1, . . . , Sm} 6= [N ] , {N} some partition of N . (30)

Assume that |Sm| ≤ · · · ≤ |S2| ≤ |S1|. Then 2 ≤ m < n, and I know that
m∑
i=1

v(Si;P ) < v (N ; {N})

which impliest that v(S1;P ) <
∑
i∈S1

zi should hold for this game

Then I have that v(S1;P ) = |S1|e+
α2

b(m+ 1)2
and |S1|

[
e+

α2

4bn

]
=
∑
i∈S1

zi

since 2 ≤ m < n implies that 0 <
1

(m+ 1)2
<
|S1|
4n

< 1 for either |S1| ≥ m or |S1| < m

thus the inequality v(S1;P ) <
∑
i∈S1

zi holds.

So far, I am studying the gains of cooperation that the individuals involved in732

a problem of common pool resources can obtain through the worth of coalitions.733

In this setting, the game is symmetric, which means that a natural way of sharing734

the value of a coalition is just dividing it by the number of its members. Every735

member of a coalition gets the same share of the worth. In this relation, this736

game is also such that a coalition with more number of members has lower-per737

members payoffs in each partition. This implies that given a partition different738

from the gran coalition, the coalition with more members willing to cooperate739

may not form, since they notice that their individual payoff is lower than if740

they were in another coalition or singleton. In the context of common pool741

resources, this implies that when players form a partition or coalition structure,742

the largest coalition, which is the one with more players being aware of about743

needs to cut down on the resource extraction, is paradoxically the coalition744

less stable; notwithstanding being the coalition with greater value. Consider a745

case in which a partition consists of two coalitions, one wit n− 1 players and a746

singleton coalition. Even when the majority is willing to cooperate, this partition747

disintegrates. A greater size of a coalition relative to the size of other coalitions748

in a partition discourages the formation of it in favor of the grand coalition.749

Example 2 Say that e = 25, c = 5, n = 9,the total revenue is given by the750

same function as example 1. Consider the following partition,751

P = {{1, 2, 3, 4, 5} , {6} , {7} , {8} , {9}}

Thus, the worth of the five coalitions are the next,752

v ({1, 2, 3, 4, 5} ;P ) = 161

753

v ({i} ;P ) = 61, i ∈ 6, 7, 8, 9
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Notice that if the largest partition was shared out by 5, then each member754

would get: 32.2 < 61.755

756

Moreover, say that player 5 withdraws from the coalition she belonged to, so757

a new partition P ′ shapes.758

P ′ = {{1, 2, 3, 4} , {5} , {6} , {7} , {8} , {9}}

Under this new configuration, the worth of coalitions in P ′ are the following,759

v ({1, 2, 3, 4} ;P ) ≈ 126.44
760

v ({i} ;P ) ≈ 51.44, i ∈ 5, 6, 7, 8, 9

Which means that were the worth of the coalition from which player 5 withdrew761

to split up into its actual cardinality, every member would get
126.44

4
≈ 31.6,762

which is less than the individual value of 32.2 when player 5 stays in. Thus the763

withdrawal of this players affects negatively the worth of the remaining players.764

However, she gets now 51.4, which is greater than the individual value she gains765

in the original partition P . In this sense, partition P is even less stable than P ′.766

In this vein, the γ-core of this game exists —as mentioned above —the equal767

payoff sharing rule belongs to it, and the largest coalition in any partition is in768

a worse position relative to it. A new, given the symmetry of the game —which,769

in passing, is due to the homogeneity of the players—equal sharing rule of the770

grand coalition is fair and comes up naturally. Each of the players gains the771

same amount. Under these circumstances, applying this rule boots the players772

to move towards the grand coalition, since if they abide in any other partition,773

their cooperative gains will be smaller or equal than that one of that rule. This774

is in line with empirical studies that show that when the group is relatively775

homogeneous, the individuals tend towards cooperation in terms of self-governing776

the resource, Bardhan (1993), Libecap (1994), Lam et al. (1998), Varughese and777

Ostrom (2001), Bardhan, Dayton-Johnson, et al. (2002).778

Example 3 Going back to the example 2. The equal sharing rule pungles up779

v (N ; {N})
9

=
549

9
= 61 to each individual. Thus there are incentives to form780

the grand coalition.781

4.4 Coalition Formation and The payoff Sharing Game782

On the other hand, in the light of results of Parkash (2019), that the γ-core as a783

cooperative solution concept can be supported as an equilibrium outcome of the784

so-called payoff sharing game, which I introduce below. Also the grand coalition785

is the unique equilibrium outcome if and only if the γ-core is non empty. This is786

another way of conceiving the formation of coalitions. Since I am interested in787

understanding this issue in the context of the common pool resources, I explore788

these results in relation to my problem.789
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The payoff sharing game is a game in two stages. It is played infinity. The790

stages are:791

– First Stage792

• It begins from the finest partition [N ] as the status quo and each player793

announces some nonnegative integer from 0 to n.794

– Second State795

• All those players who announced the same positive integer in the first796

stage form a coalition and may either give effect or dissolve it. All those797

players who announced 0 remain singletons.798

– If the outcome of the of the second stage is not the finest partition, the game799

ends and the partition formed remains formed forever. But if the outcome800

in the second stage is the finest partition, the two stages are repeated, until801

some nontrivial partition is formed in a future period. In either case, the802

outcome of the second stage is a partition in which players receive payoffs, in803

each period, in proportion to a pre-specified feasible payoff vector (z∗i , . . . , z
∗
n)804

Suppose that the community of n individuals is interested in the preservation805

and in the moderate extraction of the resource, so they have a meet in order806

to decide upon how to coordinate and who works with whom knowing in ad-807

vance what their payoffs will be in each partition. If the players agree to form a808

partition different from the finest one, the meeting ends. And they get payoffs809

according a predetermined rule. Otherwise, the meet lasts until a partition dif-810

ferent from the finest one takes place. That is to say, the meet comes off with811

participation through an agreement. Related to this, there are in the field cases812

where people meet with management and extract a common pool resource. As813

an example of this, there is the case of the study of indigenous people in Oaxaca814

(mentioned in the introduction of this work), where under the framework of usos815

y costumbres program, they have meetings on a regular basis to deliberate re-816

sponsibilities, charges, and duties regarding the extraction and management of817

their own resources. Thus they form groups of work12. In this sense, the payoff818

sharing game is useful to understand processes of formation of coalitions as in819

this example. In this game, the specified payoff vector plays a significant role,820

since the players will anchor their strategies to this. A priori, any partition could821

be a possible outcome of the second stage.822

Parkash (2019) proves specifically that as long as a partition function game823

is partially super-additive with nonempty γ-core, each payoff vector (z∗1 , . . . , z
∗
n)824

that belongs to it is actually an equilibrium payoff vector of the payoff sharing825

game in which payoffs are assigned in proportion to this vector. A partially826

super-additive partition function means that combining only all non-singleton827

coalitions in a partition increases their total worth. Formally it is,828

12. For instance, young women carry out activities different from those of young man,
who typically do the hard work whereas others chose not to be part of it but to make
up for it by paying a fine
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Definition 5 (Partially Super-additive Partition Function) A partition func-829

tion (N, v) is partially super-additive if for any partition P = {S, [N \ S]} and830

{S1, . . . , Sk} such that
⋃k
i=1 Si = S, |Si| > 1, i = 1, . . . , k,

∑k
i=1 v (Si;P

′) ≤831

v (S;P ), where P ′ = P \ S ∪ {S1, . . . , Sk}.832

In order to prove that γ-core payoff vectors can be equilibrium payoff vec-833

tors, the author shows that to dissolve a coalition if it does not include all834

players is an equilibrium strategy of each player, and that the grand coalition835

N is an equilibrium outcome resulting in per-period equilibrium payoffs equal836

to (z∗1 , . . . , z
n
n). Also, he characterizes the equilibrium of the repeated game by837

comparing per-period payoffs of the players.838

So a natural question comes to my mind, what implications would entail for839

the players involved in a common pool issue to play the payoff sharing game?840

First of all, this game is a way of incorporating a mechanism of communication,841

since they have the possibly of forming or not a coalition in the second stage.842

Allowing for communication might improve results from group interaction, Os-843

trom, Walker, and Gardner (1992). Second, under “round bargains” their efforts844

will be in favor of forming the grand coalition. And third, that the coalitions845

different from it will no be stable in the sense that, it is not an equilibrium846

strategy for each player to materialize them.847

That said, I know that the partition function of the common pool game is848

symmetric and that the grand coalition is the efficient partition, so its γ-core is849

nonempty. Next, I have to verify whether it is partially super-additive or not.850

Since the grand coalition is efficient, for the case of three or and four players851

partial partial super-additivity holds. For more than four players, let me use the852

example 2.853

Example 4 Say that e = 25, c = 5, n = 9,the total revenue is given by the854

same function as example 1. Consider the following partition,855

P = {{1, 2, 3, 4, 5} , {6} , {7} , {8} , {9}}

Now say that S = {1, 2, 3, 4, 5} and that S1 = {1, 2} and that S2 = {3, 4, 5},856

then S1 ∪ S2 = S and857

P ′ = {{P \ S} ∪ {S1, S2}} (31)

P ′ = {[N \ S] ∪ {{1, 2} , {3, 4, 5}}}
P ′ = {{1, 2} , {3, 4, 5} , {6} , {7} , {8} , {9}}

The worth of coalitions S, S1, S2 are the next,858

v ({S} ;P ) = 161

859

v ({S1} ;P ′) ≈ 76.44
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860

v ({S2} ;P ′) ≈ 101.44

thus861

v ({S} ;P ) < v ({S1} ;P ′) + v ({S2} ;P ′)

Thus the partition function of the common pool game is not partially super862

additive for cases of more than four players. Which means that in the payoff863

sharing game when the number of members of a group involved in a common864

pool issue is relatively small (say three or four) they will end up grouping. The865

grand coalition is an equilibrium outcome. Moreover, as Parkash (2019) shows,866

the grand coalition is the only equilibrium outcome if the players believe that867

the finest partition (every one single) is not a strategically relevant equilibrium868

outcome. Also when the game is played once, the grand coalition remains as an869

equilibrium outcome in the case of three players. See the following example.870

Example 5 Say that n = 3, player i may consider a deviation of the grand871

coalition to the partition P = {{i}{j, k}}, which will be strategically relevant872

rather than the finest partition if the payoffs of the other two players are higher873

in partition P than in the finest one.874

v ({N} ; {N}) = 3e+
α2

4b
875

v ({i} ; {{i} , {j, k}}) = e+
α2

9b
876

v ({j, k} ; {{i} , {j, k}}) = 2e+
α2

9b
877

v ({i} ; {{i} , {j} , {k}}) = e+
α2

16b

Under this structure, as the game is symmetric, then the feasible payoff vector878

with equal shares belongs to the γ-core of this game, then it can be the pre-specified879

payoff vector. Recall that payoffs are assigned in proportion to this vector. Thus,880

z∗i = z∗j = z∗k = e+
α2

12b
,

and the individual payoffs if partition P is formed are e +
α2

9b
for player i, and881

e+
α2

18b
for players j and k. Players j and k have no incentives to deviate from882

the grand coalition towards coalition P , since they get better payoffs. In contrast,883

player i finds it atractive to move to partition P , but she knows that for the884

others it is not. Then the equilibrium outcome is the grand coalition.885

That said, what about cases in which the number of involved players are more886

than four? It it is not clear yet if an element of the γ-core will be an equilibrium887

payoff vector of the game, since in this case the function is not partially super888
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additive. Also, it may happen that an equilibrium outcome of the game is not889

necessarily the grand coalition. This motivates the research of more scenarios890

that capture coalition patterns where intermediate coalition structures come up891

as equilibrium outcomes.892

5 Results893

This work consists of three parts. In the first part I establish the current frame-894

work of the common pool resources, definition and classification. Also I set out895

the problem of appropriation and its nature: the conditions under which is its896

a dilemma or just a situation. Also, there are some common variables that ex-897

plain cooperative behavior, although some of them are still a matter of debate.898

Thus I observe that it is a complex, multifaceted issue. Next, typically when the899

involved individuals face a dilemma, it is studied with game theory, which pre-900

dicts an non cooperative outcome, so I drew from this. I took the baseline model901

known as common pool game used in the experiments of Ostrom et al. (1994).902

In this second part, based on the sense of cooperation that some individuals903

may have and under the assumption of the model, I study conditions in which904

forming a group of cooperative members may be beneficial. I found that forming905

a group smaller than the total population is positive for cooperative people as906

long as it is not too small relative to the total population, which at the same907

time should not be too large. When the population gets large, the cooperative908

group should be relatively large as well. Although, under these circumstances909

the resource may not resist large populations. Thus in this setting, small groups910

get better gains. A cooperative group in a big population is hard to sustain. Now911

in the last part of the work, which I am still working on, I transform the original912

common pool game into a partition function game. I am studying formation of913

coalition structures and the gains of cooperation, for which I started out by ap-914

plying some recent results regarding strategic games in partition form. So far I915

found that given the symmetry of the original game its partition function version916

is symmetric and the grand coalition is an efficient partition in the sense that917

maximizes the total payoff of all players, this two properties are fundamental,918

since they guarantee that the so called γ-core is not empty, and an element of919

it is the equal payoff sharing. Also I found that partitions different from the920

grand coalition partition will not be stable, so the efforts of the players move921

towards full cooperation. In addition to that, I studied a game of two stages for922

formation of coalition structures called the payoff sharing game in relation to923

the γ-core of the common pool game. In this game for cases in which there are924

three or four players, an equilibrium outcome of the payoff sharing game is the925

grand coalition. However, for cases of more that four players it is not clear yet926

what coalition structure may emerge.927
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6 Discussion928

One concern is worthwhile to mention: the endowments. Neither the Nash equi-929

librium investment appropriation decision nor the social optimum depend on the930

endowments as long as e is sufficiently large, Ostrom et al. (1994). However, it931

may happen that small values of the endowments are actually the solution to the932

maximization problem the individuals face in either the strategic game and/or933

in the partition function game. I do not consider those cases. On the other hand,934

the results depend highly on the symmetry assumption of the players. More ac-935

curate explanations can be arrived at by changing this assumption. In the case936

of the partition function form, introducing asymmetry in the endowments and937

costs may influence the formation of coalition structures other than the grand938

coalition, since the value of a coalition includes them. When the symmetric as-939

sumption of costs and endowments is weaken, their effect on the model is more940

apparent and can be studied separately.941
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A Appendix1075

A.1 Groups and Individual Behavior1076

Proof (Proposition 4). The utility of the potential group S of implementing the1077

social optimum while the other the NE is1078

∑
i∈S

ui(x
∗∗
i , x

∗
−i) = |S|e+

|S|
n

( α
2b

)[
α− b

[
|S|
n

( α
2b

)
+ (n− |S|) α

b(n+ 1)

]]
(32)1079

= |S|e+
α2|S| (n|S|+ 2n− |S|)

4b(n+ 1)n2

whereas the utility of group S of implementing the NE just like the others is1080

∑
i∈S

ui(x
∗
i , x
∗
−i) = |S|e+ |S|

(
α

b(n+ 1)

)[
α− b

[
|S|α

b(n+ 1)
+

(n− |S|)α
b(n+ 1)

]]
(33)

= |S|e+
|S|
b

[
α

(n+ 1)

]2

Now the people interested will be indifferent between forming the group or1081

nor when1082

|S|e+
α2|S| (n|S|+ 2n− |S|)

4b(n+ 1)n2
= |S|e+

|S|
b

[
α

(n+ 1)

]2

Solving for |S|,1083



Cooperative Common-Pool Games 35

Find Least Common Multiplier of

4b (n+ 1)n2, b : 4n2b (n+ 1)

Multiply by LCM = 4n2b (n+ 1)

Simplify (34)

4en2|S|b (n+ 1) + |S|α2 (n|S|+ 2n− |S|) = 4en2|S|b (n+ 1) +
4n2|S|α2

n+ 1
; n 6= 0, n 6= −1

4en3|S|b+ 4en2|S|b+ n|S|2α2 + 2n|S|α2 − |S|2α2 =
4n2|S|α2b+ 4en4|S|b+ 8en3|S|b+ 4en2|S|b

n+ 1
;

n 6= 0, n 6= −1

Subtract
4n2|S|α2 + 4en4|S|b+ 8en3|S|b+ 4en2|S|b

n+ 1
from both sides

Simplify(
n2α2

n+ 1
− α2

n+ 1

)
|S|2 +

(
−2n2α2

n+ 1
+

2nα2

n+ 1

)
|S| = 0; n 6= 0, n 6= −1

Solve with the quadratic formula

|S| =
−
(
− 2n2α2

n+1 + 2nα2

n+1

)
+

√(
− 2n2α2

n+1 + 2nα2

n+1

)2
− 4

(
n2α2

n+1 −
α2

n+1

)
0

2
(
n2α2

n+1 −
α2

n+1

) : 0

|S| =
−
(
− 2n2α2

n+1 + 2nα2

n+1

)
−
√(
− 2n2α2

n+1 + 2nα2

n+1

)2
− 4

(
n2α2

n+1 −
α2

n+1

)
0

2
(
n2α2

n+1 −
α2

n+1

) :
2n

n+ 1

The solutions to the quadratic equation are :

|S| = 0, |S| = 2n

n+ 1
; n 6=

√
1, n 6= −

√
1

Now, if I take |S| > 2n
n+1 the utility (32) of the group S is greater strictly than1084

the utility (33) as long as n does not get large while |S| fixed. Otherwise observe1085

that1086

limn→∞
∑
i∈S ui(x

∗∗
i , x

∗
−i) = limn→∞

∑
i∈S ui(x

∗
i , x
∗
−i) = |S|e1087

1088
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Proof (Proposition 5). The group size is |S|, which at most could be n itself.
Thus |S| ≤ n, thus

− n ≤ −|S| (35)

|S| − n ≤ 0

(|S| − n)2 ≥ 0

− (|S| − n)2 ≤ 0

− |S|2 + 2n|S| − n2 ≤ 0

add up n2|S|2 − n2|S|2 to both sides of the inequality

n2|S|2 − |S|2 + 2n|S| − n2 ≤ n2|S|2

sum up 2n2|S| − 2n2|S| to both sides of the inequality

n2|S|2 − |S|2 + 2n2|S|+ 2n|S| − n2 ≤ n2|S|2 + 2n2|S|
n2|S|2 − |S|2 + 2n2|S|+ 2n|S| − n2 ≤ n2|S|2 + 2n2|S|+ n2 − n2

n2|S|2 − |S|2 + 2n2|S|+ 2n|S| ≤ n2|S|2 + 2n2|S|+ n2

|S|
(
n2|S| − |S|+ 2n2 + 2n

)
≤ n2(|S|+ 1)2

add up n|S| − n|S| to the parentehis of the left side of the inequality

|S|
(
n2|S| − |S|+ 2n2 + 2n+ n|S| − n|S|

)
≤ n2(|S|+ 1)2

|S| (n|S|+ 2n− |S|) (n+ 1) ≤ n2 (|S|+ 1)
2

|S| (n|S|+ 2n− |S|)
n2

≤ (|S|+ 1)
2

(n+ 1)

Muliply both sides by
α2

4b(n+ 1)
so as to get

α2|S| (n|S|+ 2n− |S|)
4b(n+ 1)n2

≤
(

1

b

)[
α(|S|+ 1)

2(n+ 1)

]2
Add |S|e to both sides

|S|e+
α2|S| (n|S|+ 2n− |S|)

4b(n+ 1)n2
≤ |S|e+

(
1

b

)[
α(|S|+ 1)

2(n+ 1)

]2
so it is actually the inequality∑
i∈S

ui(x
∗∗
i , x

∗
j /∈S) ≤

∑
i∈S

ui(x
∗
S , x

∗
j /∈S)

(36)
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meting the equality when |S| = n, or whenever |S| approaches to a given n not1089

too large, since1090

lim
|S|→ n

(
|S|e+

1

b

(
α (|S|+ 1)

2 (n+ 1)

)2
)

= lim
|S|→n

(
|S|e+

α2|S| (n|S|+ 2n− |S|)
4b (n+ 1)n2

)
= en+

α2

4b
.

Now for a given |S|, as n is increasingly large, I have that1091

lim
n→∞

∑
i∈S

ui(x
∗∗
i , x

∗
j /∈S) = lim

n→∞

∑
i∈S

ui(x
∗
S , x

∗
j /∈S) = |S|e,

but if |S| → n→∞ thus1092

lim
|S|→ n→∞

(
|S|e+

1

b

(
α (|S|+ 1)

2 (n+ 1)

)2
)

= lim
|S|→ n→∞

(
|S|e+

α2|S| (n|S|+ 2n− |S|)
4b (n+ 1)n2

)
=∞

1093


