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Carbon is forever:

A climate change experiment on cooperation

Abstract

Greenhouse gases generate impacts that can last longer than human civiliza-

tion itself. Such persistence may affect the behavioral ability to cooperate. In a

laboratory experiment, we study mitigation efforts with dynamic externalities in

a framework that reflects key features of climate change. In treatments with per-

sistence, pollution cumulates and generates damages over time, while in another

treatment it has only immediate effects and then disappears. We show that with

pollution persistence, cooperation is initially high but then systematically deterio-

rates with high stocks of pollution.

Keywords: Stock externalities; Public goods; Inequality; Dynamic games

JEL codes: C70; C90; D03; Q54
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1 Introduction

Unless major efforts are undertaken to reduce greenhouse gas emissions (GHG), climate

change will reach dangerous levels within this century. The impacts will be global, with

uncertainties in their magnitude and geographical distributions, and with high degrees of

irreversibility and persistence (IPCC, 2014). Coordinating international actions in regard

to mitigation is notoriously difficult. A major reason is the temptation of opportunistic

behavior by each single country that can benefit from the mitigation efforts of others

without paying the costs of reducing the carbon intensity of their economy (Nordhaus,

2013). Here we study the role of the long-run persistence of GHG emissions in the

atmosphere, which makes climate change a dynamic social dilemma. In particular, carbon

dioxide is the most important pollutant responsible for anthropogenic climate change, and

a considerable portion of its current stock will last for well over a millennium, which –

on the time scale of human civilization – basically means forever (Inman, 2008).

The research question is whether and how such long-term persistence of pollution

affects the ability of societies to cooperate. This aspect has been singled out in the

literature as one of the factors that hamper cooperative efforts in mitigating climate

change (Wagner and Weitzman, 2015). There may be multiple reasons for it that relate

to the strategies adopted and the learning process. Decision-makers may be myopic,

in the sense that they consider only the short-run consequences of their actions but

not those in the long-run.1 Coordinating on a specific equilibrium may be harder in a

dynamic as opposed to a static social dilemma. Furthermore, dynamic dilemmas involve

irreversibility due to the lasting impact of pollution, and hence the consequences of past

choices are harder or impossible to undo. These elements are tied to behavioral aspects,

which we study by means of a laboratory experiment.

We model the climate change game as a strategic interaction among long-lived decision-

makers in the absence of a legally binding treaty, where each decision-maker indepen-

dently chooses its level of GHG emission at each point in time. Pollution benefits the

1A noteworthy example, although not modeled here, is that politicians may be short-sighted because
of re-election concerns and uncertain voters’ preferences (Köke and Lange, 2017).
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decision-maker that emits it because it is linked to economic production, but it has neg-

ative externalities in the form of damage for all decision-makers. More precisely, we

consider a public good game, and modify it in order to capture salient characteristics of

the climate change dilemma.

We characterize this platform from a theoretical point of view and study its behavioral

properties with an experiment by varying the degree of persistence of GHG emissions. In

a Persistent treatment, the global emissions generated in one round remain fully in the

atmosphere in the next rounds and indefinitely cumulate into a stock of pollution. Con-

versely, an Immediate treatment reproduces a static although repeated social dilemma,

where the entire damage of the current emissions is suffered within the current round.

Finally, a Halving treatment is an intermediate case, where emissions cumulate from one

round to the next but the stock depreciates – halving in each round – because pollution

dissipates. In all treatments the indefinite horizon gives rise to multiple equilibria, creat-

ing opportunities for partial or full cooperation. Our main theoretical benchmarks are the

socially optimal level of emissions and the constant-actions Markov perfect equilibrium.

We calibrated the parameters of the experiment in a way such that these benchmarks

are identical across treatments. Hence, differences in behavior will easily reveal which

scenario is most conducive to cooperation in mitigation efforts.

What emerges from the experiment are distinct patterns of behavior under static vs.

dynamic externalities. More precisely, the persistence of pollution has effects on the trend

and strategies that decision-makers adopt to sustain mitigation policies. Under dynamic

externalities, initial emission levels are low and they are followed by an upward trend

steeper than under static externalities. This pattern seems consistent with individual

strategies conditioning emissions on the level of the stock of pollution. When the situation

becomes critical in terms of cumulated stock, participants in the Persistent treatment are

increasingly less able to support high levels of cooperation.

One must acknowledge the limitations to the external validity of most economic ex-

periments on climate change. In the laboratory, decision-makers are individuals and not

nations. The number of players involved is usually rather small. Laboratory communi-
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cation hardly resembles the process of international climate negotiations. That said, the

available field evidence exhibits major drawbacks, some of which can be circumvented

through experiments. In the field, many key parameters are difficult to measure. Con-

sider for instance the returns from cooperation, the discount factors, and the expectations

about the damage caused by climate change. Laboratory experiments make it possible to

set these parameters, render them observable to the experimenter and the participants,

and establish causal relations among variables (Falk and Heckman, 2009).

We place the contribution of this paper in the context of the experimental literature

on climate change and on cooperation with dynamic externalities (Section 2). We then

present the theoretical platform of analysis (Section 3) and describe the experimental de-

sign (Section 4). Finally, we report the results (Section 5) and conclude with a discussion

of the results (Section 6).

2 Literature review

This paper contributes to the experimental literature about dynamic social dilemmas

and about cooperation in a climate change set-up. With few exceptions, existing public

good experiments have a static set-up. Climate change externalities are instead dynamic

because they depend on the stock of pollution accumulated in the atmosphere and not

just on the yearly flow. Overall, cooperation in dynamic set-ups appears more difficult

than in static ones. The seminal paper by Herr et al. (1997) investigates extraction in

a finite horizon common-pool resource experiment contrasting a static externality with

a dynamic one, and reporting lower payoffs with dynamic externalities. Battaglini et al.

(2016) show that when contributions to a non-depletable public good are irreversible they

are lower than under reversibility. Our experiment furnishes novel evidence by focusing

on a climate change game with an indefinite horizon. Comparing a static externality

to a dynamic externality with different degrees of persistence, we identify higher initial

cooperation followed by its significant deterioration when persistence is in place. We

adopt a climate change framework that builds on the model of Dutta and Radner (2004,
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2009). The second of these theoretical papers identifies “greenhouse traps”, i.e. equilibria

in which the current stock of pollution affects emissions decisions. Interestingly, in Section

5 we document behavior in our Halving treatment that can be interpreted as consistent

with traps of this type.

With respect to the standard public good experiment, we have modified the action

space, the gain-loss frame, the duration, and players’ asymmetries. First, in our game, the

theoretical benchmarks are interior points of the action space, in contrast with the typical

public good experiment, where social optimum and Nash equilibrium are at the corners

of the action space (Laury and Holt, 2008). Second, the choice concerns a public bad,

as in the case of climate change: all endowments are in the common project by default,

and everyone decides how much to withdraw from it to their private account (Andreoni,

1995; Khadjavi and Lange, 2015).2 Third, we implement a long-run interaction in the

laboratory given that societies are long-lived entities and climate change has consequences

in the distant future. The time horizon is indefinite, implemented through a continuation

probability after every round.3 Fourth, we introduce an asymmetry in individual earnings

in order to mirror the wide income gaps among countries, which is a major issue in

addressing climate change because it may undermine cooperation (Tavoni et al., 2011).

Using a public good terminology, in our set-up the return from the private account is

lower for a poor than for a rich player type.

The most closely related experiments are Pevnitskaya and Ryvkin (2013), Sherstyuk

et al. (2016), and Ghidoni et al. (2017). Their set-up is similar to ours but none of them

studies the impact of pollution persistence. Pevnitskaya and Ryvkin (2013) study the

role of framing and time horizon on cooperation. Under a finite horizon, participants

were faster in learning to cooperate, but increased emissions in the last round. They

have persistence rate of 0.75 and groups of 2 members. Sherstyuk et al. (2016) com-

pare overlapping generations to long-lived agents, allowing for access to past history and

2Andreoni (1995) and Khadjavi and Lange (2015) find that, if participants can only withdraw from
the common project, cooperation is lower than when they can contribute to it.

3Experiments with indefinite repetitions are common with the prisoner’s dilemma (e.g. Camera and
Casari, 2009), but are few and far between with public goods (Battaglini et al., 2016). Climate negotia-
tions typically involve numerous players and a wide action space.
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intergenerational advices. With overlapping generations, cooperation became harder to

sustain due to both limited incentives and greater strategic uncertainty. They have a

persistence rate of 0.3 and groups of 3 members. Finally, Ghidoni et al. (2017) consider

an indefinite horizon, like the other studies above, but, unlike them, only consider static

externalities. The study decouples emission choices from realized damage through the

introduction of randomness and delay so as better to identify individuals’ cooperative

strategies. Their groups comprise 4 members. We will further discuss these papers in

Section 5.

The impact of income inequality studied in Ghidoni et al. (2017) and Tavoni et al.

(2011) is instead absent from Pevnitskaya and Ryvkin (2013) and Sherstyuk et al. (2016).

Tavoni et al. (2011) is one of the first papers to study inequality in climate change

experiments. Strong inequality in earnings within a group hampered cooperation. Their

study belongs to a branch of the literature pioneered by Milinski et al. (2008) that models

climate change as a collective catastrophe that can happen if cooperation remains below

a threshold. Participants could either keep their endowment in a private fund or invest

it in mitigation. If, by the end of the experiment, the group’s cumulated investment in

mitigation is below a known threshold, the catastrophe of losing everything takes place

with some probability.4

Within the Milinski et al. (2008) approach to modeling the dynamic climate game,

two other experiments investigate aspects that the present paper neglects. Bosetti et al.

(2017) study the interplay between mitigation and investments in a clean technology.

In our paper, instead, the only available action concerns mitigation and no other tool

is available. Finally, Hauser et al. (2014) investigate the role of voting mechanisms

when managing a common pool with threshold under an indefinite horizon and with a

catastrophic risk that would fall on the next generation. Here instead we only consider

individual voluntary contributions.

4Some experiments embed scientific uncertainty and ambiguity in climate tipping points. Empirically,
the threat of a catastrophe enhances cooperation if the uncertainty on the tipping point is low. However,
this deterrence effect disappears for high levels of uncertainty (Barrett and Dannenberg, 2012, 2014) or
ambiguity about the tipping point (Dannenberg et al., 2015).
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3 The model

3.1 The climate game

We consider a group of N ≥ 2 long-lived decision-makers interacting over an indefinite

number of rounds in a game (sequence, henceforth). At any round t ∈ {0, 1, . . .}, there

will be an additional round with probability δ ∈ [0, 1), or else the sequence will end at t

with probability (1− δ). Decision-makers never know whether or not they are in the last

round. The continuation probability δ, as well as all other parameters of the game, are

public information.

In every round t, each decision-maker i = 1, 2, .., N chooses its level of emission ei(t)

from an interval ranging from 1 to a common finite upper-bound. Choices are simulta-

neous. Emissions are the sole input in the production of an output that is exclusively

enjoyed by the emitting subject according to a production function specified below. After

every round, decision-makers observe the current individual emission ei(t) of everyone in

the group.

Over the rounds, global emissions accumulate into a stock of pollution according to

the following dynamic equation:

E(t) = σE(t− 1) +
N∑
i=1

ei(t) , (1)

where σ ∈ [0, 1] is the persistence rate of past emissions. Hence, if σ = 0 all emissions

dissipate at the end of every round, while if σ = 1 emissions last forever. At the beginning

of the sequence, the initial stock of pollution is E(0) = E0 ≥ 0.

Each decision-maker privately benefits from the output produced through its own

current emission, but, in absolute terms, all N decision-makers are equally damaged by

the stock of global emissions accumulated up to the current round. The instantaneous

payoff of decision-maker i is given by benefits from own output minus climate damages:

ui(t) ≡ γln (aiei(t))−
c

N
E(t) . (2)
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Emission intensity of production is linear and time-invariant: one unit of emission

grants ai > 0 units of income. The natural logarithm implies a declining marginal utility

of income.5 The parameter γ > 0 serves only for rescaling.

We introduce heterogeneity by assuming two types of decision-makers in equal num-

bers: poor (type p) and rich (type r), which differ only in the level of one parameter,

ar > ap. Note that, for the same emission level, type p decision-makers contribute just

as much to climate change as type r ones. Hence, the aggregate volume of emissions is in

potency the same for types p and r, because the upper-bound in emission is the same.6

Finally, emissions damages increase linearly in the stock of pollution according to

the parameter c > 0. Unlike in a standard public good game, payoffs can be negative

in the case of a lack of international cooperation, because Equation (2) is an additive

function.7 Although in absolute terms the damage is equal for rich and poor decision-

makers (parameter c), in relative terms it will harm poor decision-makers more than

rich ones since the latter can always obtain higher benefits from their emission. This

feature reproduces an aspect of the field: poor countries are predicted to suffer from

climate change relatively more than rich countries.8 Describing the difference between

rich and poor decision-makers only in terms of their income and relative damages is a

simplification. However, in the experiment, this will allow us to precisely pin down the

impacts of this source of inequality, abstracting from other sources (e.g., differences in

available technologies or environmental footprints).

5In their climate cost-benefit analyses, Nordhaus (2013) and Stern et al. (2006) assume a utility
function that takes the natural logarithm of GDP per capita.

6Tavoni et al. (2011) model countries heterogeneity through pre-determined contributions to a climate
protection account that leave countries with a different inheritance in terms of endowment level when
they begin to make choices. In the present study, instead, heterogeneity stems from different population
weights ai, which implies a structural country difference originating from the lower economic yields from
the same level of emissions.

7Some scholars have employed a multiplicative function for damages (Nordhaus, 2013), while others
have used an additive one (Dutta and Radner, 2004). There is consensus that the stock of pollution
linearly impacts on temperature. Most scholars argue for a convex damage function in temperature
(Burke et al., 2015) but others have used a linear approximation (Dutta and Radner, 2004). Linearity
makes it possible to keep the experiment simple, as further discussed below. The number of decision-
makers at the denominator of the damage rescales payoffs so that the social optimum emission e∗ does
not depend on N .

8The channels are somewhat different, however, since in the field damages will be higher for poor
countries because they are located in warmer climates (IPCC, 2014).
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3.2 Theoretical benchmarks

Here we outline the social optimum and three different equilibrium strategies of the

game described in the first part of this section. For each of these benchmarks we will

emphasize key properties that we will then contrast with the experimental evidence. As

we will see, the Markov perfect equilibrium (C-MPE) of the climate game is far from

delivering the socially optimal level of emissions. Participants, however, could achieve

the social optimum by coordinating on a constant trigger equilibrium (C-TE). They could

also support full or partial cooperation by following non-constant Markov strategies (NC-

MPE) where emissions depend on the current level of the stock of pollution. Proofs are

in Appendix A.

We will interpret the continuation probability δ as the discount factor of an (intertem-

porally) risk-neutral decision-maker (Camera and Casari, 2009). Hence, each decision-

maker maximizes the present expected value of its current and future payoffs (Equation

2),

vi =
∞∑
t=0

δtui(t) . (3)

Social optimum. If decision-makers jointly maximize the unweighted sum of individual

present-valued payoffs:

v =
N

2
(vr + vp),

they set a socially optimal emission that is constant over the rounds, and which, for any

type of decision-maker, is equal to

e∗ = γ
1− σδ
c

.

The socially optimal emission e∗ is time-invariant and independent of the stock of

pollution E because of the linearity of the damage in E. It is obtained by equating the

marginal benefit from the individual emission γ/ei to the marginal present-valued group’s

damage,

N × c

N

[
1 + δ

σ

(1− δσ)

]
=

c

1− δσ
,
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which is itself independent of the stock E.9 The socially optimal emission e∗ is the same

for all decision-makers because with our payoffs the marginal benefit does not depend on

ai, and is decreasing in emission persistence σ.

Constant-actions Markov perfect equilibrium (C-MPE). In general, at any round

t, Markov strategies map the current state, i.e. the stock of pollution E(t), into the set of

emissions. Simple and interesting equilibrium candidates are the constant-actions strate-

gies that depend neither on the stock E nor on the history of past emissions.

Proposition 1. For any σ there exists a constant-actions Markov perfect equilibrium

(C-MPE) that contemplates a constant level of emission for both r and p decision-makers

that is N times the socially optimal emission, i.e. eF = N × e∗.

In a C-MPE each decision-maker equates the marginal benefit γ/ei to the marginal

individual damage c
N(1−δσ) , which does not depend on E because of the linear damage.

When emissions entirely dissipate at the end of each round (σ = 0), the game becomes

a repeated one, and the C-MPE corresponds to the Nash equilibrium of the stage game.

Although when 0 < σ ≤ 1 the game is a dynamic one, both marginal benefits and

marginal damages from emissions do not depend on the stock. This property – also

discussed in footnote 7 – simplifies the environment for the decision-makers and makes

it possible to sustain the simple C-MPE.

Note that for any emission level e constant over the rounds, the stock E converges

to the steady-state Ne/(1 − σ) under partial persistence (0 < σ < 1). When instead

pollution persists forever (σ = 1), the stock associated with constant emissions follows a

trajectory E(t, e) that diverges.

Constant trigger equilibria (C-TE). In our settings there also exist equilibria based

on the history of play that may support a wide range of (cooperative) outcomes. In

particular, we are interested to identify under which conditions the social optimum can

9The constant social optimum is also the consequence of an implicit assumption of no technological
change. We rule out technological change to keep the experiment simple, although it could help to
achieve climate policy objectives (Bosetti et al., 2012; Gerlagh and Van der Heijden, 2015).
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be supported as an equilibrium outcome when decision-makers punish deviations on larger

emissions with a reversion to constant strategies, in particular the C-MPE, eF . We label

the associated equilibrium as “constant trigger” equilibrium.

Proposition 2. If δ is higher than a threshold δ̄ > 0, then a (subgame perfect) Constant

Trigger Equilibrium (C-TE) exists with individual emissions equal to the social optimum

e∗ for any decision-maker i.

With the punishment of permanent reversion to eF , the threshold is

δ̄ =
1

N − 1

[
ln(N)

N

N − 1
− 1

]
,

that, for the structure of the payoffs in our model, only depends on N . More precisely,

when δ > δ̄, all emissions levels in [e∗, eF ] can be supported as equilibrium outcomes. For

future reference, we note that with N = 4 (as in our experiment), the threshold δ̄ is close

to 0.28. In addition, emissions in [e∗, eF ] can be supported in (subgame perfect) equilibria

with punishments that are milder than in the C-TE: after a deviation, decision-makers

revert to emission eF for a finite number of rounds T . As usual, this possibility comes

with the requirement of a higher threshold δ̄ for any lower T .

Equilibria with non-constant Markov strategies (NC-MPE). When the persis-

tence rate σ is not nil, decision-makers may follow stock-dependent strategies that specify

different emissions ei(E) depending on the current level of the stock, i.e. non-constant

Markov strategies. This is particularly interesting in our environment. As Dutta and

Radner (2009) have shown in a similar model, non-constant Markov equilibria may in

fact determine a rich pattern of emissions and stock of pollution.

The dependence of strategies on the stock of pollution can take many different forms.

As said, with payoffs as in (2), the marginal effect of ei(t) on payoffs is independent

of E(t). This intuitively implies that there exist no equilibria based on “simple” non-

constant Markov strategies such as a proportionality rule ei(E) = βi × E.10 However,

10The proof of non-existence of equilibria with “simple” Markov strategies is available upon request.
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with σ > 0 decision-makers can use the stock level as a visible coordination device. They

may “target” a trajectory of the stock (which could be constant when σ < 1) and use it

as a reference and monitoring device to support cooperation.

Define E(t, e) as the “long-run” stock of pollution when decision-makers constantly

emit e in any period, from t onward. In particular, with σ < 1, it is E(t, e) = Ne/(1−σ),

and with σ = 1, E(t, e) = E(t− 1, e) +N × e.

Proposition 3. Sufficiently many and patient decision-makers (respectively N ≥ eF

eF−e∗

and δ ≥ δ̄) may coordinate on the following non-constant Markov perfect equilibrium

(NC-MPE):

• if E(t) ≤ E(t, e∗), emissions lead to a stock E(t′, e∗) at some t′ > t and remain

constant at e∗ thereafter;

• if instead E(t) > E(t, e∗), decision-makers emit eF and the stock converges to

E(t, eF ).

Proposition 3 considers the possibility to implement the socially optimal emission e∗.

Analogous propositions could be obtained when implementing higher and less efficient

levels of emission in the interval [e∗, eF ], which would then be associated to different

thresholds of N and δ. The idea of supporting this NC-MPE is the following. Consider

first the case with σ < 1 and constant long-run stock. Decision-makers set the target stock

of pollution equal to the long-run socially optimal level, i.e. E(t, e∗) = Ne∗/(1 − σ). If

the stock is below E(t, e∗), decision-makers guarantee that it reaches it – either smoothly

or with a single “jump” in emissions – and remains forever at this “target” level with

individual emissions e∗. Emissions higher than e∗ are dominated when δ ≥ δ̄, exactly

the same threshold identified above for Proposition 2. If instead the stock “has gone

too far”, i.e. E(t) ≥ Ne∗/(1 − σ), the decision-makers act non-cooperatively forever

onward with an individual emission equal to eF . In this case the stock converges to the

associated non-cooperative steady-state level E(t, eF ) = NeF/(1− σ). A single decision-

maker may want to try and push E back into the “good region” (i.e. below E(t, e∗)).

However, if there are sufficiently many other decision-makers emitting eF , then even the
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strongest attempt (i.e. the decision-maker setting e = 0) in the ideal situation (i.e. a

stock of pollution just above E∗) would be a sacrifice made in vain. With the other N−1

decision-makers emitting eF , the stock of pollution would remain above the target E∗ in

any case, if (N − 1)eF ≥ Ne∗. This condition is equivalent to the one in the Proposition

and is satisfied in our experimental set-up with N = 4, δ = 0.92, eF = 12, and e∗ = 3.

Dutta and Radner (2009) referred to this pattern of emissions as a “greenhouse trap”.

Interestingly, the stock of pollution could converge to E(t, eF ) cyclically if, for some

reasons, emissions undershoot and/or overshoot that target.11

When emissions persist forever (σ = 1), the socially optimal emission e∗ is still im-

plementable, even though the target must now be a trajectory E(t, e∗) of the stock. As

long as the associated trajectory of the stock “does not go too far”, i.e. E(t) ≤ E(t, e∗),

decision-makers have no individual incentive to deviate from the socially optimal emission

e∗. If instead, at any t, the stock overshoot E(t, e∗), then cooperation breaks down and

emissions revert to the C-MPE forever as in a “greenhouse trap”.

These NC-MPE exhibit some interesting properties. Whatever the level of persistence

σ > 0, the emissions of a decision-maker may remain constant with no immediate reac-

tions to others’ changes in emissions. This happens as long as global emissions keep the

stock below the target level E(t, ẽ). Here the stock of pollution plays the role of allowing

decision-makers to coordinate their actions with a target stock level and with no need to

check all individual emissions systematically. This desirable property of NC-MPE must

be contrasted with at least two difficulties in coordinating on a level of stock. First,

the target level could be a trajectory that changes at any round. Second, a stock is not

completely under a decision-maker’s control: even if a decision-maker is willing to reduce

its own emissions, cooperation may still break down because the stock has already “gone

too far”. We will explore these possibilities in Section 5.

11Emissions and stock respectively larger than eF and E(t, eF ) may temporarily occur off equilibrium
in the punishment phase of non-Markov equilibria. We discuss the possibility of these more sophisticated
strategies and equilibria at the end of Section 5.
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4 Experimental design

4.1 Treatments

We designed an experiment based on our climate game that comprises three treatments

(Table I): Persistent and Halving – where the externality is dynamic –, and Immediate

– where the externality is static. The three treatments cover the full range of possible

persistence levels. In the Persistent treatment emissions never dissipate (σ = 1). This

scenario roughly approximates the climate change problem where the most significant

GHG persist in the atmosphere for a very long time. Out of one ton of carbon dioxide

emitted today about 50% will remain after 30 years and from 20% to 40% will remain after

1,000 years (IPCC, 2007). The corresponding value of σ that will generate this degree

of persistence is 0.98 for the 30-year horizon and 0.998-0.999 for the 1,000-year horizon.

Other GHG, instead, are short-lived. Methane, for instance, can be removed from the

atmosphere by a much faster chemical reaction and persists for decades. In the Halving

treatment half of the stock of pollution dissipates after every round (σ = 0.5). Finally,

in the Immediate treatment there is no stock accumulation and all the damage happens

in the current round (σ = 0). Some pollution externalities are best approximated by the

Immediate treatment, such as noise pollution, and others by the Persistent treatment,

such as radioactivity from nuclear waste elements like Plutonium 244 (with a half-life

of 80 million years). See Figure B.1 of the Appendix for a graphical illustration of the

damage profiles across treatments.

Climate change is a long-term problem, and the experimental set-up incorporates

this aspect through indefinite repetitions. After every round there is a continuation

probability of interaction of δ = 0.92. Many simulations of climate change consider

scenarios for the year 2100, which is 85 years distant from today. In the experiment, each

sequence has an expected length of 1/(1 − δ) = 12.5 rounds, which can be interpreted

as a decision every 7 years up to 2100.12 Consider also that for risk-neutral agents this

12The initial round starts with no past history of emissions, and we set the initial stock of pollution E0

equal to 0. Varying the initial stock of pollution can be an interesting treatment dimension (e.g. Tavoni
et al., 2011) that we leave for future research.
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set-up is theoretically equivalent to an infinite time horizon with a discount factor of

0.92 (Dal Bó and Fréchette, 2017). While individuals have a finite life, societies can be

treated as long-lived. This calibration of δ creates conditions favorable for the emergence

of cooperation because the shadow of the future is sufficiently large to sustain the socially

optimal emission. From a theoretical point of view, what is required is that δ be larger

than 0.28 (Proposition 2).

In our design the damage from the marginal emission is identical across treatments in

terms of its present value. For each unit of emission, the expected damage is 33.375 tokens

in all treatments but varies in how it is spread over time. In the Immediate treatment

the damage occurs entirely in the round in which the emission is done (c = 33.375). In

the Halving treatment, half of the damage occurs in the current round (c = 18.0225) and

the other half in the future. In the Persistent treatment, there is a damage of c = 2.67 in

the current round and of 2.67 in each one of all future rounds. The expected value of the

damage in the Persistent treatment is 33.375, given an expected duration of 12.5 rounds.

Given this calibration of σ and c, the socially optimal level of emission and the C-

MPE are the same in all treatments (Proposition 1), allowing for easy comparison of the

experimental results. Both theoretical benchmarks are internal elements of the action

space: participants could emit any integer amount between 1 and 18, where the social

optimum is e∗ = 3 and C-MPE is eF = 12. Thus, participants were allowed to implement

excessive restraint or overshoot in emissions.13

A group comprises N = 4 decision-makers. This is a simplification in comparison to

the over 190 countries who meet for climate negotiations. Consider, however, that in 2010

eight regions accounted for almost 2/3 of annual GHG emissions worldwide (EDGAR,

JRC and PBL, 2016). Four regions accounted for more than half (China, USA, Euro-

pean Union 28, and Brazil). Limiting group size to four makes it possible to increase the

number of independent observations while retaining the possibility of overcoming coordi-

13The action space is similar to most public good experiments in terms of number of elements. The
condition ensuring that eF and e∗ are the same for any σ is determined as follows. Indicate with σh
the persistence rate in the Persistent treatment, and let σl be 0 when l = Immediate or 0.5 when
l = Halving. Then the damage coefficient in treatment l, cl, is set to ch

1−δσh

1−δσl
, where ch is the damage

coefficient in Persistent.
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nation issues and some degree of heterogeneity. Settings with four players are typical in

many public goods games.14

There are two rich and two poor members in each group, randomly assigned, with

an equal potential for emissions. The RICE model, for instance, has five poor regions

and seven rich regions. Our design incorporates income inequalities of a comparable

magnitude of those in the field. On average, the per-capita income in rich regions is 4.8

times higher than in poor regions ($34,085 vs. $7,125.9).15 In our design, for any level

of emissions, the per-capita output of a rich participant is five times larger than that

of a poor one. This is achieved by setting appropriate weights ar and ap (Table I). By

design there is no intrinsic conflict between concerns for efficiency and equality, since

both motivations will induce participants to increase cooperation levels toward the social

optimum level (in the Persistent treatment, this is true only in the long run).16

4.2 Procedures

In our experiment, the instructions were expressed in a neutral language and did not

use any term that could recall climate change (Appendix D).17 Overall 225 volunteers

participated in the experiment. There were 25 participants in each session: 20 engaged

in the main task described in Section 4.1, while 5 performed a side task with no other

purpose than to keep them busy during the session. Participants assigned to the side task

were those that displayed the lowest level of understanding of the instructions. These

5 participants had to guess the level of damage in the current round and in ten rounds

14Meta-studies on public goods experiments detect a small impact of group size on cooperation (e.g.
Fiala and Suetens, 2017).

15We consider the 2010 average per-capita GNIs according to World Bank data for the regions of the
RICE model. We label “rich” a region with a per capita GNI greater than $12,745 in 2010 (World Bank’s
threshold for high income countries). Otherwise, the region is labeled “poor”. Poor regions in RICE
turn out to be Africa, China, Eurasia, India, and Other Asia (N = 5). Rich regions are EU, Japan,
Latin America, Middle East, Russia, USA, and Other High Income (N = 7).

16In fact, poor decision-makers suffer more for the damages of higher emissions than rich ones only in
relative terms, i.e. with respect to the individual benefits.

17For instance, we referred to emission choices as “production”, and explained that one participant’s
production had two effects: to increase personal “revenue” and to “damage” earnings for everyone.
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Table I: Overview of the experiment.

Treatments

Immediate Halving Persistent

Parameters

δ Discount factor (continuation probability) 0.92 0.92 0.92

σ Pollution persistence 0 0.5 1

c Damage in the current round 33.375 18.0225 2.67

ar Population weight for rich decision-maker 40.05 40.05 40.05

ap Population weight for poor decision-maker 8.01 8.01 8.01

γ Utility rescaling 100 100 100

E0 Initial stock of pollution 0 0 0

N Number of players in a group 4 4 4

Benchmarks

e∗ Social optimum (individual emission) 3 3 3

eF Constant Markov perfect equilibrium 12 12 12

Observations

Number of participants (main task + side task) 60+15 60+15 60+15

Number of groups 55 60 60

Number of sequences 11 12 12

Average length of a sequence 10.8 8.3 8.8

Note: All sessions but one were performed in May 2015: Immediate (20, 21, 27), Halving (28, 29,
June 18), Persistent (14, 25, 28). Session 20/05/2015 (Immediate) was interrupted during the third
sequence for time constraints following the protocol described in footnote 20. The unit for the aver-
age length of a sequence is a round in a sequence. According to Wilcoxon-Mann-Whitney (WMW)
tests differences in the length of the sequences are not statistically significant when comparing Imme-
diate vs. Persistent (p-value= 0.802) and Immediate vs. Halving (p-value= 0.366). When comparing
Halving vs. Persistent, the WMW test detects a marginally significant difference (p-value= 0.089).

from the current one for a given group of active participants.18 The alternative would

18They received e0.25 for each round of all sequences plus a show-up fee of e5. On average, low
score participants overestimated damages in the current round of 50 tokens in the Immediate treatment,
17 tokens in the Halving treatment, and 12 tokens in the Persistent treatment. The lower precision of
guesses in the Immediate treatment may be due to the higher sensibility of damages to the marginal
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have been to send them away, but this might have upset them. Moreover, we opted to

exclude them instead of simply controlling for their quiz performance in the statistical

analyses, because we thought that it was a cleaner way to obtain high quality data, since

it prevented low score participants’ actions from influencing others’ behavior.

The 20 participants in the main task performed up to four repetitions (or sequences)

of our climate change game. This allowed participants to gain familiarity with the com-

plexities of the climate game.19 A sequence comprised an indefinite number of rounds,

depending on random draws by the computer that were ex-ante unknown to participants

and experimenter alike.20 Within each sequence, participants interacted with the same

group (partner protocol). After every sequence, new groups were formed so that in fol-

lowing sequences no participant ever interacted again with a person that she had already

met (perfect stranger protocol).

Climate change negotiations are performed by professionals, but we recruited college

students. We aimed at ensuring that participants were well-qualified in the sense of having

a good understanding of the rules. To this end: (i) instructions explained the task in a

simple way and with extensive use of figures; (ii) the software was a user-friendly interface

and a built-in simulator tool with which participants could compute present and future

consequences of hypothetical emissions; (iii) all participants completed a comprehension

quiz on the instructions (Appendix E); (iv) those with a poor understanding of the

instructions were excluded from the main task; (v) after the quiz, everyone underwent a

fifteen-round practice sequence playing against robots in order to familiarize themselves

with the main task; (vi) after every round, we asked participants to write down on a record

emission (Table I, parameter c). Due the random duration of the sequences, we can only evaluate the
precision of guesses on the damage in ten rounds in a handful of cases. These guesses are quite noisy
and inaccurate. The lack of proper incentives to predict damages may explain imprecisions.

19Participants in experiments with an indefinite horizon may need some repetitions of the supergame
before converging to a stable outcome (Dal Bó and Fréchette, 2017). While the number of sequences per
session may appear low, previous experiments have documented that sharp changes in behavior often
take place already in early sequences.

20Participants were recruited for a maximum of three hours and a half. If a session was still running
after 2 hours and 40 minutes, the experimenter announced that the current sequence was the last one
and that the session would finish within the next 30 minutes. The experimenter told participants that
the exact minute at which the sequence was stopped was determined by a 30 faces dice roll, which was
immediately rolled and observed by the experimenter but not by the participants.
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sheet their own and other group members’ emissions in order to make sure that they had

actively followed the play; (vii) participants experienced four separate sequences that were

new restarts with identical rules; hence, they could learn by doing; (viii) the instructions

explicitly stated that if everyone emitted 3, group earnings would be maximized (social

optimum). More details on procedures (i)–(viii) are in Appendix B.

Table I reports some statistics on the experimental sessions. In every session five

groups simultaneously played during a sequence. Overall, we managed to implement 11

sequences for the Immediate treatment, yielding 55 different groups (5×4+5×4+5×3).

For the Halving and Persistent treatments, instead, we implemented 12 sequences yielding

60 groups for each one of these treatments (5 × 4 + 5 × 4 + 5 × 4). Participants in the

main task were paid according to the total amount of tokens that they had earned in all

the sequences: they received e0.01 for every 6 tokens plus a show-up fee of e4 in the

Persistent treatment, e5 in the Halving treatment, and e6 in the Immediate treatment.

Since cumulate earnings could be negative at the end of the experiment because of the

damage, we ensured participants a minimum payment of e10. Average earnings for those

who participated in the main task were e17.6; overall, 40 participants (20%) earned e10.

Recruitment was done via ORSEE (Greiner, 2015) and participants were involved in

at most one session. Instructions were read aloud and participants had a hard copy on

their desks. Sessions took place at the BLESS laboratory of the University of Bologna

using zTree (Fischbacher, 2007).

5 Results

After providing an overview of aggregate emissions across treatments, we present seven

main results, where we compare emission levels of rich and poor participants (Result 1),

show the effect of persistence on initial emissions (Result 2) and on emission trends (Result

3), as well as reporting disaggregated analyses on the strategies adopted by participants

(Results 4–7).

The aggregate levels of emissions are 9.4 for the Immediate, 8.8 for the Halving, and
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8.5 for the Persistent treatment when considering all rounds. They are computed as the

means of the individual emissions within a group in a sequence. These emission levels are

statistically indistinguishable across treatments, as one can see from a Tobit regression on

groups’ aggregate emissions (Table II, col. 3). Non-parametric tests on groups’ aggregate

emissions in sequence 1 confirm the lack of significant treatment differences (Table C.1 in

Appendix). One can express aggregate emissions in terms of cooperation rates, 1− [(ei−

e∗)/(eF − e∗)] for ei in-between e∗ and eF , to facilitate comparisons with other studies.

Cooperation rates are 29% in Immediate, 35% in Halving, and 33% in Persistent.21

The analysis of aggregate emissions may be too coarse to properly identity the treat-

ment effects of dynamic externalities. For this reason, we further explore our data, first by

contrasting emissions of rich and poor participants and then by studying initial emissions

and trends.

Result 1 (Rich vs. poor types). Average emissions of rich participants are usually

lower than those of poor participants, but the difference is quantitatively small.

Support for Result 1 is provided in Figure 1 and Table III. Recall that theory predicts

equal emissions for rich and poor participants (Proposition 1). In the experiment, rich

participants emitted on average 6% to 15% less than poor participants depending on

treatments (Figure 1). Table III reports Tobit regressions of individual emission choices

controlling for a variety of relevant factors. The coefficient for a dummy that takes value

1 for rich participants is generally not statistically significant.22

We can place this finding in the context of two related studies. In a similar set-

up, Ghidoni et al. (2017) find small differences in the same direction but generally not

statistically significant. In a threshold public good game, Tavoni et al. (2011) report

larger differences in the same direction and also a statistically significant link between

21These cooperation levels are in line with those found in the dynamic public bad experiments of
Sherstyuk et al. (2016) and Pevnitskaya and Ryvkin (2013) in comparable treatments (49% and 10-20%,
respectively). Long-run participants in Sherstyuk et al. (2016) achieved average individual emissions of
4.5 in a possible range of 1-11, with a social optimal at 3 and a C-MPE at 6. In Pevnitskaya and Ryvkin
(2013) average individual emissions with indefinite horizon were between 8 and 9 in a possible range
between 0 (social optimal) and 10 (C-MPE).

22See Tables C.2 and C.3 in Appendix for robustness analyses using non-parametric tests on sequence
1 and additional regressions.
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Table II: Emissions under static vs. dynamic externalities.

(1) (2) (3)

Individual

emission

in round 1 of

sequence 1

Average group

emission in

round 1 of

all sequences

Average group

emission in

all rounds of

all sequences

Treatment dummies

Halving –0.816 –0.792 –0.169

(0.659) (1.048) (0.851)

Persistent –1.358* –1.921** –0.625

(0.740) (0.955) (1.018)

Rich type –0.929

(0.709)

Sequence number 0.592*** 0.292*

(0.177) (0.175)

Length of past sequence –0.018 –0.035

(0.027) (0.055)

Length of current sequence 0.128**

(0.051)

Constant 7.538*** 7.033*** 7.594***

(0.312) (0.973) (1.368)

Wald test p-value: Having vs. Persistent 0.414 0.247 0.607

Observations 180 175 175

Note: Tobit regressions with observations censored at 1 and 18. The unit of observation is a par-
ticipant’s emission in the first round (col. 1), the average group emission in the first round of a
sequence (col. 2), and the average group emission in all rounds of a sequence (col. 3). Standard
errors are clustered at the session level. The variable “Halving” (“Persistent”) is a dummy taking
value 1 in the Halving (Persistent) treatment, 0 otherwise. The variable “Length of past sequence”
counts the number of rounds in the previous sequence; in sequence 1 it is set to 12.5. * p < 0.1, **
p < 0.05, *** p < 0.01.

the within-group earnings inequality and the ability to cooperate of a group: among

those groups where rich participants contributed relatively more to the public good than

poor participants did, groups that successfully cooperated are overrepresented. In our

experiment this association is not statistically significant. On using as dependent variable
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Figure 1: Average emissions of rich and poor by treatment.

9.1
8.1 7.9

9.7 9.6
9

C-MPE

Social optimum

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

A
ve

ra
ge

 e
m

is
si

on

Immediate Halving Persistent

Rich Poor

Note: The unit of observation is one type of participants of a group in the sequence. All sequences
are included (N = 55 in Immediate, N = 60 in Halving, N = 60 in Persistent). We consider the
average emission of the two rich (poor) participants of a group over all rounds of the sequence. The
vertical segments represent the 95% confidence interval.

the average emission of the rich-types divided by the overall group emissions, a regression

shows a statistically insignificant coefficient for a variable denoting those groups that

successfully cooperated (p-value = 0.997, N = 175).23

In terms of cumulated earnings, rich participants ended up considerably better off

than poor participants. On average, the relative earnings of a poor participant with

respect to a rich one range from 38% to 66% depending on the treatment. In the C-

MPE equilibrium, the predicted earnings gap ranges from 41% to 78% depending on the

treatment.

We now zoom in on our data in order to highlight important treatment effects on the

emission dynamics that remain undetected when considering aggregate emissions.

Result 2 (Cooperation in round 1). Persistence lowers emissions in the initial deci-

sion of a sequence.

23OLS regression with clustered standard errors at session-level and controls for treatment dummies,
sequence number, and length of current and past sequence. We define a group as successfully cooperating
if its aggregate emission was lower or equal to seven. A robustness check where cooperative groups
are those with an aggregate emission below the median one in that treatment confirms this result (p-
value= 0.721).
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Table III: Tobit regressions of individual emission.

Dependent variable: Immediate Halving Persistent

Individual emission in a round (1) (2) (3) (4) (5)

Rich type 1.164 –0.223 –0.989*** –0.676 –0.892

(0.860) (0.488) (0.338) (1.582) (1.507)

Round number within a sequence 0.014 0.245*** –0.062* 0.673*** –0.352

(0.037) (0.087) (0.035) (0.067) (0.272)

Stock of pollution at the beginning of a round 0.106*** 0.024***

(0.012) (0.005)

Sequence number 0.209 1.192*** 0.986** 0.501* 0.312***

(0.336) (0.375) (0.417) (0.266) (0.102)

Length of past sequence –0.014 –0.148*** –0.005 –0.004 –0.002

(0.102) (0.040) (0.043) (0.082) (0.029)

Mistakes in the quiz 0.220** 0.609*** 0.486*** 0.450 0.202

(0.090) (0.170) (0.062) (0.346) (0.200)

Limited liability 4.053*** 0.881** –1.397***

(0.189) (0.428) (0.405)

Constant 9.360*** 6.278*** 2.280*** 4.264** 7.051***

(1.620) (0.604) (0.703) (2.107) (1.564)

Observations 2380 2000 2000 2120 2120

Pseudo R2 0.008 0.041 0.084 0.048 0.069

Note: Tobit regressions with observations censored at 1 and 18. The unit of observation is a participant
in a round. All sequences are included. Standard errors are clustered at the session level. “Rich type” is
a dummy taking value 1 if a participant is of type r, and 0 otherwise. “Length of past sequence” counts
the number of rounds in the previous sequence; in sequence 1 it is set to 12.5. “Mistakes in the quiz”
counts the number of mistakes made by a participant in the quiz on the instructions. “Limited liability”
is a dummy taking value 1 if the emission decision was made under limited liability (see footnote 24), and
0 otherwise. * p < 0.1, ** p < 0.05, *** p < 0.01.

Support for Result 2 is provided by Figure 2 and Tables II and IV. Focusing on the

first round of all sequences, the average emission is 8.3 in the Immediate treatment, 7.5

in the Halving treatment, and 6.4 in the Persistent treatment. First round emissions

exhibit an ascending order from high to no persistence in all sequences (Figure 2), which

is statistically significant at 5% level in sequence 1 (Table IV, JT test). The bilateral dif-

ference between Immediate and Persistent treatments in first round emissions of sequence
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1 is also statistically significant at 5% level (Table IV, WMW test).

Figure 2: Average emissions in round 1 across sequences.

C-MPE

Social optimum

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

A
ve

ra
ge

 in
di

vi
du

al
 e

m
is

si
on

s 
in

 ro
un

d 
1

1 2 3 4
Sequence number

Immediate

Halving

Persistent

Note: The treatments ranking remains the same in all sequences. The unit of observation is an individual
emission in the first round of a sequence.

24



Table IV: Tests on treatment differences in round 1 emissions.

Average emission p-value Observations

Jonckheere-Terpstra test (JT)

Immediate > Halving > Persistent 6.9, 6.2, 5.7 0.020 60, 60, 60

Wilcoxon-Mann-Whitney tests (WMW)

Immediate vs. Persistent 6.9, 5.7 0.043 60, 60

Immediate vs. Halving 6.9, 6.2 0.423 60, 60

Halving vs. Persistent 6.2, 5.7 0.193 60, 60

Note: First round of sequence 1 only. The unit of observation is a participant. The null hypothesis in JT
and WMW tests is that the samples come from the same population. In JT, the alternative hypothesis is
that the medians are ordered by persistence as shown in the table.

Tobit regressions on emissions in the first round confirm the finding that Persistent

is lower than Immediate when controlling for a host of relevant variables (Table II). The

finding is statistically significant both when considering only sequence 1 (col. 1) and

when considering all sequences (col. 2).24

As we will see in the next result, while the Persistent treatment starts with emissions

lower than the other treatments, it also exhibits a steeper trend.

Result 3 (Trend). Emissions in the Persistent and Halving treatments exhibit a signif-

icantly steeper trend over the rounds of a sequence than in the Immediate treatment.

Support for Result 3 is provided by Figure 3 and Table III. The trends of average

emissions over the rounds within a sequence are shown in Figure 3. One can see steep

linear trends for both the Halving and the Persistent treatments, which are statistically

significant at 1% level according to a Tobit regression on individual choices (Table III,

col. 2 and 4). Instead, no statistically significant linear trend is present in the Immediate

treatment (col. 1).

24Result 2 – as well as the other results in this section – is robust when controlling for situations where
a participant’s cumulative earnings were negative, thus in the region of limited liability. The dataset
always includes choices under limited liability, which is the situation where the participant’s cumulate
earnings dropped below e10 or started monotonically decreasing after reaching a maximum below e10.
In terms of number of choices, 235 in Immediate, 342 in Halving, and 0 in Persistent. None of the results
changes when choices under limited liability are omitted.
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At the sub-sequence level, Figure 3 suggests that an upward trend in emissions within

a sequence is also present in the Immediate treatment approximately until round 10.

That trend then flattens in later rounds. Tobit regressions where we pool data from all

treatments confirm the graphical evidence (Table C.5 of the Appendix, col. 3): when

considering only the first 10 rounds of all sequences, the estimated coefficient of the trend

is positive and statistically significant also in Immediate (p-value < 0.001). However, even

within the first 10 rounds the trends of Persistent and Halving are significantly steeper

than the trend in Immediate (p−value < 0.001 and p−value = 0.037, respectively). These

treatment differences are robust to a number of relevant controls, including the evolution

over sequences, the length of past sequences, and level of participants’ understanding.25

Figure 3: Aggregate emissions over the rounds.
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Note: The unit of observation is a group in a round. Every round contains observations from all sessions
and all sequences implemented in a session (3 or 4 depending on the session). Due to the random termina-
tion of the sequences, the number of observations decreases over rounds: in round 1 N = 55 in Immediate,
and N = 60 in Halving and Persistent, see also footnote 25.

Given the expected duration of a sequence set by design at 12.5 rounds, the com-

bination of Results 2 and 3 explains why we do not find an aggregate treatment effect.

25Due to the indefinite horizon, our dataset is unbalanced. Table C.5 in Appendix also reports a
robustness check where we truncate observations at round 20 in order to deal with a more balanced
dataset (col. 2). Focusing only on the first 20 rounds does not change the essence of any of the results
although a positive but weaker trend is here found in the Immediate treatment too. The difference in
trends between Immediate and Persistent remains strong (p−value < 0.001). The difference between
Immediate and Halving trends is instead somewhat weaker (p−value = 0.107). Finally, checking for non-
linear trends, Persistent and Halving treatments still exhibit significantly steeper trends than Immediate.
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Dynamic externalities induce participants to reduce initial emissions, as compared with

static externalities, but at the same time they are associated with emissions that increase

more over the rounds and thus take-over those in the Immediate treatment. In the Im-

mediate treatment participants also start from a somewhat low emissions level possibly

to give cooperation a chance. However, they begin scaling up emissions when observing

deviations to higher emissions. It is notable that the upward trend that we identified in

Immediate disappears around round 10, when the average emission is close to the C-MPE.

At that point participants play the same best-response emission to the Nash equilibrium

and emissions stop growing.

To uncover the behavioral channels behind Results 2 and 3, the next three results give

an assessment of the strategies adopted by the participants in the different treatments as

compared to our theoretical benchmarks. We will first evaluate the share of participants

that adopt constant strategies (Proposition 1) against the percentage of those who display

non-constant patterns. We will then investigate whether changes in emissions are more

in line with a behavior ensuing from the adoption of trigger strategies (Proposition 2) or

if they are instead the outcome of stock-dependent strategies (Proposition 3).

Result 4 (C-MPE). The constant Markov perfect equilibrium describes at most 5% of

the individual strategies in any treatment.

The C-MPE equilibrium is a poor predictor of behavior in our experiment. This

conclusion is remarkably similar across treatments. When taking to the data the C-

MPE equilibrium of an individual emission of 12 in every round (Proposition 1), one

can hardly find any support: less than 1% of participants fit this definition.26 A more

generous definition of C-MPE that includes all individuals emitting 12 plus or minus 2 in

every round fits 4% of participants in Immediate, 2% in Halving, and 3% in Persistent.

When taking as reference the average emission of a group in a sequence, this classification

yields similar results: 4% in Immediate and Halving, 5% in Persistent.

How many participants instead managed to sustain the social optimum? Result 5

26The unit of observation is a participant in a sequence: N = 180 in Immediate, N = 100 in Halving,
N = 240 in Persistent. Only sequences of three or more rounds are considered.
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addresses this question by applying the same technique as employed in Result 4.

Result 5 (Social optimum). A minority of participants – less than one third – always

choose near-socially optimal emission levels.

The socially optimal outcome has some empirical attraction, especially in the Persis-

tent treatment. At the group level, nobody in Immediate or Halving was able to achieve

a group average emission of 3 in every round of a sequence. In Persistent only 2% of

groups managed to do so. When applying a more generous definition of social optimum,

which is a constant emission of 5 plus or minus 2, one can classify as closer to the social

optimum about 13% of groups in Immediate, 12% in Halving, and 28% in Persistent.

This is similar to the classification of individuals with this more generous definition: 13%

of participants in Immediate, 8% in Halving, and 31% in Persistent.27

In Results 4 and 5 we attempted to classify each individual in a sequence considering

just one constant emission level. Here we generalize this exercise by classifying an indi-

vidual as constant if she follows any of the eighteen possible levels of constant emissions.

In the experiment, only a minority of individuals actually followed a constant strategy

when allowing a bandwidth of +/ − 2: 25% in Immediate, 17% in Halving, and 47% in

Persistent.

An additional analysis at the group level provides further insights into non-constant

behavior. Table V partitions the emission space into sixteen cells based on the initial and

last emission, where groups exhibiting no trend in emissions are on the main diagonal

(shaded area). Among the groups that interacted for at least two rounds, those with

roughly constant emissions are 36% in Immediate (16/45), 51% in Halving (23/45), and

37% in Persistent (22/60). Consistently with the previous analyses, many groups do not

fit a constant strategy classification. Moreover, Table V shows that groups starting with

high emissions rarely became cooperative. The ratio of the number of groups with strictly

increasing vs. strictly decreasing trend is about 4:1 in Immediate, 10:1 in Halving, and

27The socially optimal emission of 3 remains at the lower bound of the interval considered. When
focusing on longer sequences treatment differences are similar. For example, when considering only
sequences that lasted at least 6 rounds (instead of 3), classified participants are 8% in Immediate, 3% in
Halving, and 14% in Persistent.
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9:1 in Persistent. In line with Result 2, groups in Halving and Persistent are statistically

significantly more likely to start with an average emission close to the social optimum

(interval 1-5) than in Immediate (Probit regression: Immediate vs. Halving p−value=

0.173, Immediate vs. Persistent p−value= 0.013, N = 175).28 Consistently with Result

3, approximately 50% of these cooperative groups exhibit higher emissions by the end of

the game in both dynamic treatments.

Table V: Classification of groups based on emissions in the first and last round.

First round emission, by treatment

Immediate (N = 55) Halving (N = 60) Persistent (N = 60)

1–5 6–10 11–14 15–18 1–5 6–10 11–14 15–18 1–5 6–10 11–14 15–18

L
a
st

ro
u
n
d

em
is
si
o
n

1–5 5 (2) 3 7 (2) 1 11 3

6–10 14 (7) 2 5 23 (8) 1 7 7 1

11–14 15 5 1 7 8 (5) 2 7 3

15–18 4 4 2 (1) 5 3 4 12 2 1

Note: The unit of observation is a group in a sequence. All sequences are included. In parentheses are
the number of groups that interacted for only one round.

With our theory we can identify two explanations for participants changing and in-

creasing their emissions. They may react to others’ deviations, as with trigger strategies

(Proposition 2 and Result 6) or they may follow stock-dependent strategies (Proposition

3 and Result 7).

Result 6 (Trigger strategies). Participants using trigger-strategies activated by devi-

ations were estimated at between 21% and 36% depending on the treatment.

Participants following a trigger strategy should punish others’ defections from the co-

operative play by increasing their own emissions (Proposition 2). We follow the algorithm

employed in Ghidoni et al. (2017) to identifying emission patterns in line with strategies

of a trigger-type, that is, an individual who transitions from a cooperative mode to a

punishment mode in the round following a defection event. The unit of observation of

this analysis is a participant in a sequence that lasted three or more rounds. The al-

gorithm focuses on all the instances where one observes the maximal positive jump in

28The Probit regression includes data from all sequences and controls for treatment dummies, sequence
number, length of current and past sequence. Standard errors are clustered at session-level.
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emissions made by a participant between two subsequent rounds. We interpret these

maximal jumps as possible candidates for the switch to a punishment mode. An indi-

vidual is hence classified as a trigger-type if two conditions are met. First, immediately

before the first instance of maximal jump the individual experienced a defection by other

group members. We consider as defection any positive increase in others’ average emis-

sions between two rounds before and the round preceding that with the maximal jump,

i.e. e−i(t− 1)− e−i(t− 2) > 0 where e−i is the average emission of the other three group

members. Second, in the presence of multiple instances of maximal jump within the same

sequence, the algorithm requires that the mean emission of the others in the two rounds

before the jumps was strictly increasing on average.

According to the algorithm, participants in a sequence that can be identified as fol-

lowing a trigger strategy are 34% (75/220) in Immediate, 21% (51/240) in Halving, and

36% (86/240) in Persistent. These shares are statistically indistinguishable when com-

paring Immediate vs. Halving and Immediate vs. Persistent. The share of trigger-types

in Halving is significantly lower than in Persistent (Probit regression in Table C.6 of the

Appendix).

While this algorithm clearly relies on some behavioral assumptions, it can capture

emission patterns that are consistent with both grim trigger and T -rounds punishment

strategies.29 The outcome presented should not, however, be regarded as an exact esti-

mate but rather an approximate one. The algorithm classifies as trigger-types individuals

who reverted to (higher) emissions different from the C-MPE (as it should instead be the

case in C-TE strategies). The classification of the algorithm is also not a necessary con-

dition for trigger-types. It may fail to classify as such an individual who follows a trigger

strategy if the trigger is never activated. Overall, this procedure may overestimate or

underestimate the number of participants using these strategies. Hence, we performed a

further analysis focusing on non-constant types, where the algorithm has better chances

to identify trigger strategies.

29As discussed with Proposition 2, the social optimum can be also sustained with a limited period of
punishment because in our experiment the discount factor parameter δ is high.
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In particular, one can intersect the two classification criteria, trigger-strategy vs.

constant strategy with a bandwidth of plus or minus 2. In this new analysis, about

half of participants that follow a non-constant strategy can be classified as trigger-types.

More precisely, the shares are about 49% (63/128) in Immediate, 55% (46/83) in Halving,

and 52% (67/128) in Persistent. Instead, much smaller shares of individuals that follow

a constant strategy can be classified as trigger-types: 13% (12/92) in Immediate, 5%

(5/157) in Halving, and 17% (19/112) in Persistent.

Alternatively to trigger strategies, participants who exhibit non-constant emissions

may have followed stock-dependent strategies (Proposition 3).

Result 7 (Stock-dependent strategies). In the Halving and Persistent treatments,

the lagged level of the stock in a sequence is on average positively correlated with the

current individual emissions.

Support for Result 7 is provided by Figure 4 and Table III. In the Halving and Per-

sistent treatments, the emissions of the average participant positively correlate with the

level of the stock of pollution in the group as shown by Tobit regressions in Table III

(col. 3 and 5). This empirical exercise suffers from the limitation that – due to the

experimental design – the correlation between rounds and the stock of pollution is rather

strong. Nevertheless, by exploiting the data variability across groups, we can disentangle

the correlation between emissions and the stock from that between emissions and a simple

time trend. When including both the rounds in a sequence and the stock of pollution

as regressors, the coefficient of the time trend (“Round number within a sequence”) be-

comes negative, while the coefficient of the stock is positive and statistically significant,

which suggests a preeminence of the stock over the time trend variable in explaining

the increasing dynamic of emissions.30 This result suggests that on average participants

adopted stock-dependent strategies. However, considering the large heterogeneity in in-

dividual strategies highlighted by Results 4–6, our analysis cannot rule out that the share

of participants using stock-dependent strategies is still a minority.

30Differences in the magnitude of the stock coefficients are attributable to the rescaling of the damage
coefficient c across treatments (Table I).
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Figure 4: Participants’ emissions depend on the stock of pollution.
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Figure 4 illustrates average emissions in a given round as a function of the stock of

pollution. The theoretical benchmarks of social optimum and C-MPE are represented by

flat lines. Empirically, in the Persistent treatment, the higher the stock, the higher were

average emissions (Figure 4a). As a possible consequence of the ever-increasing stock in

Persistent, about one third of groups end up with average emissions above 15 (19 out

of 60 groups, in contrast with 9 out of 45 in Immediate and 8 out of 45 in Halving; see

Table V).

In the Halving treatment participants’ strategies are generally increasing in the stock

of pollution but we frequently observe “cycles” at given levels of stock (Figure 4b). A

cycle takes place when both the stock of pollution and the global emissions of the group

simultaneously decrease from one round to the next, but later they start increasing again.

In the Halving treatment, 15 out of 20 groups that played more than three rounds ex-

perience a cycle. The decreasing phase of a cycle takes place at stock levels between 34

and 142, with an average of 101, which is close to the predicted steady-state stock of 96

under C-MPE.31 This pattern is consistent with the strategies illustrated in Proposition 3

31A group-by-group graphical analysis is in Figures C.1 and C.2 of the Appendix. In Halving, 40% of
the groups display more than one decreasing phase over the sequence. In Persistent, instead, it can be
observed that the majority of the groups display a positive relationship between stock and emissions.
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and with the “greenhouse trap” suggested in Dutta and Radner (2009). When following

stock-dependent strategies, the convergence to a stock may take place from below (with

increasing emissions) or from above (with decreasing emissions).32

As shown in Figure 4, in the dynamic treatments, the pollution stock often exceeds

C-MPE levels, which is not predicted by equilibrium behavior of the theoretical analysis.

This pattern is confirmed by more disaggregated analyses. The stock was above the C-

MPE level for at least three rounds, not necessarily consecutive, in 60% of the groups of

the Halving treatment and in 13% of the groups of the Persistent treatment.33 A possible

behavioral interpretation for the higher frequency of stock overshooting in Halving vs.

Persistent may be that participants in Halving have the impression of being able to control

the stock of pollution and reduce it if necessary, as shown by the “cycles”. In Persistent,

instead, participants may be more cautious because of stronger persistence.34

6 Discussion and conclusions

To foster international efforts to combat climate change, we need a thorough grasp of those

factors that hinder or favor cooperation. Here we employ the experimental method to

gain an understanding of behavioral drivers that are considered crucial in overcoming this

special type of social dilemma. In particular, the focus is on a central issue of climate

change: the long-term persistence of key greenhouse gases in the atmosphere, which

generates irreversibility. We developed an experimental platform carefully calibrated to

identify the causal effect of different degrees of persistence of pollution on the ability

to cooperate in mitigating emissions. We compare settings that cover the full range

of possibilities: a static (although repeated) treatment with no persistence, a dynamic

treatment where emissions cumulate and last forever, and an intermediate treatment with

32This pattern is the one illustrated in Figure 4b and Figure C.2, precisely “around” the C-MPE
steady-state stock.

33These percentages refer to groups that interacted for at least three rounds: N = 25 in Halving and
N = 60 in Persistent.

34Stock and emissions above C-MPE levels may be the outcome of temporary punishment phases
of sophisticated non-Markov behavior off equilibrium. This is a theoretical possibility which, however,
requires high levels of sophistication and coordination among individuals and strategies that depend not
only on the stock of pollution but also on the precise date of the period.
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a decay in pollution at a rate of 50% every round.

We report three main findings. First, the persistence of pollution leads to a high initial

cooperation level (Result 2). This contrasts with what one may conjecture: a scenario

where today’s actions have only immediate consequences could be expected to elicit more

cooperation than a complex scenario with diluted and persistent consequences over time.

Second, although the previous result seems reassuring, we also report that, when pol-

lution accumulates because of persistence, cooperation declines (Result 3). This may be

explained with the adoption of trigger strategies reacting to (deviating) current emis-

sions or strategies that are increasing in the stock of pollution. These strategies are

indeed equilibria of the game with dynamic externalities. Our evidence suggests that the

increasing trend in emissions emerging in the Halving and Persistent treatments is linked

to the stock of pollution rather than to time or experience (Result 7). With Markov

strategies, the level of the stock of pollution can become a coordination device that is

not available when persistence is nil (Proposition 3). However, this type of coordination

is a difficult endeavor. With persistence, lower initial emissions may be a clever way to

learn others’ intentions toward cooperation in the presence of irreversibility. However,

cooperation is not perfectly controllable by a single decision-maker because the stock of

pollution reflects the emissions of all decision-makers. Hence, it can be easily depleted

and, when cooperation breaks down, the stock keeps growing.

Third, behavioral differences in emissions between rich and poor types as modeled in

the experiment reported here are of second-order importance (Result 1). The extent to

which the rich participants emit less than poor ones is rather small, and it is especially

evident with dynamic externalities. This empirical result is consistent with the theoretical

predictions of our environment and suggests that rich participants are not willing to

contribute much more than poor participants to the mitigation efforts, even if mitigation

is more demanding for the poor in terms of welfare. As a consequence, there is a wide

earnings gap between poor and rich types.

Any economic experiment on climate change is necessarily a study in a highly sim-

plified setting with some restrictive assumptions. This is also true in our case. Take
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for example the damage function: in the laboratory, impacts are immediate and deter-

ministic instead of delayed and stochastic (Ghidoni et al., 2017). Uncertainty or limited

perception of the actual environment may impair decision-makers’ ability to cooperate.

Also the initial level of pollution stock, zero in all our treatments, may play a role. Future

work can remedy these and other limitations of our approach. Nevertheless, we believe

that experiments are additional means to further our understanding of how to foster

international cooperation in tackling climate change.

This study makes a novel contribution to the behavioral components of cooperation

to solve the climate change problem by addressing the issue of pollution persistence. One

cannot take findings from laboratory experiments and use them directly to give policy

advice. Caution should be exercised in this transfer of knowledge because the external

validity of economic experiments on climate change is not automatic. Yet our results have

some relevance for the research agenda on climate change and can complement available

field evidence. Scholars have claimed that persistence severely affects the ability of nations

to cooperate, but the empirical support is lacking. With a simple model of climate

change, our study suggests that policy-makers should not delay mitigation actions until

the situation deteriorates, because the experimental evidence suggests that cooperation

becomes harder than it was early on. In the experiment, the climate model involves

bottom-up mitigation efforts but does not include a system of pledges similar to the one

that led to the Paris agreement. Voluntary pledges allow for common but differentiated

responsibilities in mitigation of poor and rich regions. In our climate game, satisfying the

right for development of poor regions risks derailing the overall cooperative equilibrium.

Rich regions should be willing to restrict emissions voluntarily in order to ensure the

right to development of poor regions, but this tendency is rather weak in the experiment.

One solution could be explicitly agreeing on distinct targets of emissions by income level,

which would at the same time sustain a strong aggregate mitigation and the right to

development. Carbon is forever, but the good news is that, at least in the short-term,

this will not initially condemn us to suffer from lack of cooperation any more than in the

usual static social dilemmas. Nevertheless, when taking a long-run perspective, policy
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interventions are urgent and must start as soon as possible.
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Online appendix for

Carbon is Forever: A climate change experiment on cooperation

A Proofs

We first briefly discuss the social optimum. At any round t, let E be any initial value

of emission and V (E) the associated value function, i.e. the solution of the dynamic

programming problem (Hamilton Jacobi Bellman equation):

V (E) = max
er,ep

{
N

2
γ [ln(arer) + ln(apep)]− c×

(
E +

N

2
er +

N

2
ep

)
+ δV

(
E +

N

2
er +

N

2
ep

)}
,

where for a simpler notation E is the stock of pollution inherited from the past. Let

ep(E), er(E) be solutions to the previous maximization. Plugging these into the previous

equation we obtain a functional equation in V (E). We guess that V (E) takes the following

form:

V (E) =
N

2
(wp + wr)−

N

2
(kp + kr)E.

We now have to verify if these four parameters wi and kr exist that satisfy the HJB

equation and to identify them. From the HJB equation, applying our guess for the value

function we obtain

N

2
(wp + wr)−

N

2
(kp + kr)E = max

er,ep
{N

2
γ [ln(arer) + ln(apep)]− c×

(
E +

N

2
er +

N

2
ep

)
+

+δ

[
N

2
(wp + wr)−

N

2
(kp + kr)σ

(
E +

N

2
er +

N

2
ep

)]
}

The necessary conditions on er, ep are

γ

ei
= c+ δσ(kp + kr)

N

2

or

ēi =
γ

c+ σδ(kp + kr)
N
2

which is independent of E. Plugging into the HJB Equation, we have

N

2
(wp + wr)−

N

2
(kp + kr)E =

N

2
γ [ln(arēr) + ln(apēp)]− c×

(
E +

N

2
ēr +

N

2
ēp

)
+

+δ

[
N

2
(wp + wr)−

N

2
(kp + kr)σ

(
E +

N

2
ēr +

N

2
ēp

)]
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Solving for wp + wr

(wp + wr) =
1

1− δ

{
(kp + kr)E + γ [ln(arēr) + ln(apēp)]− c×

(
E

2

N
+ ēr + ēp

)
+

+δ

[
−(kp + kr)σ

(
E +

N

2
ēr +

N

2
ēp

)]}
and in order for wp + wr to be independent of E it must be

(kp + kr)− c
2

N
− δ(kp + kr)σ = 0

that is

kp + kr =
2c

N(1− δσ)

which shows ēi = e∗. Substituting, the optimality condition corresponds to equating

the marginal benefit from the individual emission to the marginal present-valued group’s

damage,

N × c

N

[
1 + δ

σ

(1− δσ)

]
=

c

1− δσ
.

Finally, we also notice that

V (E) =
1

1− δ

[
N

2
γ [ln(are

∗) + ln(ape
∗)]− c

1− σδ
Ne∗

]
− c

1− σδ
E.

Proof of Proposition 1 (Constant-actions Markov perfect equilibrium). We

show that if all decision-makers j 6= i play the constant action eF then the best response

for decision-maker i is ei = eF which leads to a value function of the type

Vi(E) = w − kE.

With this guess on the value function we can write

w−kE = max
ei
{γln(aiei)−

c

N
×
(
E + ei + (N − 1)eF

)
+δ

[
w − kσ(E + ei + (N − 1)eF )

]
}

where for a simpler notation E is the stock of pollution inherited from the past. The

maximizer must satisfy

γ

ei
=

c

N
+ δσk ⇐⇒ ei =

Nγ

c+Nδσk

Subsisting, the previous HJB equation does not depend on E iff,

−k = − c

N
− δσk.
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or, equivalently

k =
c

N (1− δσ)
.

It then follows that the best response is indeed

ei =
Nγ

c+Nδσk
=

Nγ

c+ δσ c
(1−δσ)

=
Nγ (1− δσ)

c
= eF .

It is also useful to notice that with this result we can write

w =
1

1− δ

[
γln(aie

F )− c 1

1− δσ
eF

]
so that

Vi(E) =
1

1− δ

[
γln(aie

F )− c 1

1− δσ
eF

]
− c

N (1− δσ)
E.

For future reference the value functions can be written as

V F
i (E0) = UF

i −
cσ

N(1− δσ)
E0,

where

UF
i =

1

1− δ

[
γln(ai e

F )− c

1− δσ
eF

]
.

QED

Proof of Proposition 2 (Constant Trigger Equilibrium). For any E, the incentive

compatibility constraint for any decision-maker i with a (candidate) constant equilibrium

with actions êi is

γln(ai êi)−
c

N
×
(
E +

N

2
êr +

N

2
êp

)
+ δ

{
Ûi −

c

N(1− δσ)
σ

(
E +

N

2
êr +

N

2
êp

)}
≥ γln(ai ẽi)−

c

N
×
(
E + ẽi +

N − 1

2
êi′ +

N

2
êj

)
+ δ

{
UFi −

c

N(1− δσ)
σ

(
E + ẽi +

N − 1

2
êi′ +

N

2
êj

)}
Clearly, an optimal deviation requires ẽi = eF and the constraint becomes

γln(ai êi)−
c

N
× êi + δ

{
Ûi −

c

N(1− δσ)
σêi

}
≥ γln(ai e

F )− c

N
× eF + δ

{
UF
i −

c

N(1− δσ)
σeF

}
Using the definition of

Ûi =
1

1− δ

[
γln(ai êi)−

c

N(1− δσ)

(
N

2
êr +

N

2
êp

)]
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and of

UF
i =

1

1− δ

[
γln(ai e

F )− c

1− δσ
eF

]
(the w in the proof of Proposition 1) the constraint can be finally rewritten as (using

êi = êr = êp)

γln(ai êi)−
c

N
× êi + δ

{
1

1− δ

[
γln(ai êi)−

c

1− δσ
êi

]
− c

N(1− δσ)
σêi

}
≥ γln(ai e

F )− c

N
× eF + δ

{
1

1− δ

[
γln(ai e

F )− c

1− δσ
eF

]
− c

N(1− δσ)
σeF

}
which becomes

c
(
eF − êi

) [ 1

N
+ δ

N + σ(1− δ)
(1− δ)N(1− δσ)

]
≥ 1

1− δ
γ
[
ln(ai e

F )− ln(ai êi)
]
.

Substituting êi = γ(1−δσ)
c

and eF = N γ(1−δσ)
c

this becomes,

c

(
N
γ(1− δσ)

c
− γ(1− δσ)

c

)
(1− δ)(1− δσ) + δ [N + σ(1− δ)]

N(1− δσ)
≥ γ

[
ln

(
N
γ(1− δσ)

c

)
− ln

(
γ(1− δσ)

c

)]

from which finally

δ ≥ 1

N − 1

[
ln(N)

N

N − 1
− 1

]
.

QED

Referring to the case N = 4 as in our experiments, the constraint becomes

δ ≥ 1

3

[
ln(4)

4

3
− 1

]
=

1

9
[8ln(2)− 3] ' 0.28.

Proof of Proposition 3 (non-constant Markov equilibria). The proof is based on

the arguments of the proof of Theorem 8 of Dutta and Radner (2009) and only sketched

here.

We show that: (a) when the stock is above the “target” stock level E(t, ẽ) so that all

other decision-makers are expected to set an emission equal to eF , then it is optimal for

any decision maker to do so, (b) when instead the stock is at (or below) the level E(t, ẽ)

then, given that all other players are setting the optimal level of emission ẽ then the best

response is indeed ẽ. Consider the case for ẽ = e∗, but the reasoning clearly applies for

other ẽ.

Case (a). Notice that if eF is sufficiently large, then even if the decision-maker sets

e = 0 then the stock remains above E∗ and all other players will continue to set emissions

eF . In this case, eF is a best-response. The condition that guarantees eF is sufficiently
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large is,

E(t, ẽ) + ε+ (N − 1)eF ≥ E(t, ẽ) +NeF

for any ε. Considering the more demanding case to violate the constraint (i.e. ε = 0),

the condition is implied by N ≥ eF

eF−e∗ (which is satisfied in our experimental setup where

N = 4, eF = 12 and e∗ = 3).

Case (b). Consider the situation in which the current stock is actually at E∗ (the case

E(t) < E∗ requires a more elaborate discussion with explicit specification of the players’

strategies for E(t) < E∗, but is based on similar arguments), and all players are expected

to set emissions at e∗. Using the one-deviation principle, the decision-maker has then

the choice either to set e∗ which would perpetuate the socially optimal equilibrium and

associated payoff, or deviate with a higher e (other deviations are dominated). In the

latter case, it is simple to see that the optimal deviation is exactly eF in which case he

would obtain an immediate gain but the stock would then evolve to the C-MPE stock

EF . As usual and as in our previous proofs, this type of deviation is dominated if δ is

sufficiently large (the condition being precisely that of Proposition 2 in this case).

When decision-makers coordinate on ẽ > e∗ and a target stock E(t, ẽ) > E(t, e∗),

case (a) clearly requires a different condition for eF sufficiently large, but the steps of the

reasoning are unchanged. Finally, as for case (b), let the current stock be at E(t, ẽ) (as

before, for E(t) < E(t, ẽ)). Since all other decision-makers are emitting ẽ, any emission

ei > ẽ induces a future payoff associated with a stock E(t, eF ) that is dominated by that

with E(t, ẽ) if δ is sufficiently high.

QED
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B Additional information about experimental proce-

dures

Figure B.1 shows the damage profiles across the treatments of our experiment.

Figure B.1: Illustration of Damage Profiles across Treatments.

Note: Damage suffered in each round because of an occasional emission in round 2 (=pulse)
and zero emission in all other rounds. The emission as well as the present value of the gener-
ated damage are identical in all treatments, but the distribution of the damage over time differs.

Below we report additional details on the measures we adopted to ensure that partic-

ipants had a good understating of the climate game.

• Out of 25 participants that took part in a session, only the 20 with the highest score

in an understanding quiz on the instructions participated in the climate game. There

was no monetary compensation for correct answers in quiz. Whenever a participant

selected a wrong answer, the software pointed out the correct one. Participants had

50 seconds per question, and missing answers counted as mistakes.

• In every round participants could use a simulator to forecast the future impact of

emissions. Up to four simulations per round were allowed. In Immediate and Persis-

tent, participants used on average 5% of the total simulations available. In Halving,

they simulated slightly more (9%). Some participants never used the simulator (17

in Immediate, 18 in Halving, and 14 in Persistent).

• Before the incentivized sequences, all participants took part in a practice sequence

of 15 rounds interacting with robots. Robots were programmed to choose different

levels of emission in every round. Robots’ decisions were the same for all participants

6



and for all sessions in every treatment. The practice sequence had no consequences

on earnings.

• At the end of every round participants were asked to write down on paper each group

member’s emission choice. We used these record sheets simply to help participants

to keep track of the history of the game. While past emissions are irrelevant for

decisions according to the C-MPE, they can be relevant for the C-TE (Proposition

2).

• Participants were explicitly told that the socially optimal emission was equal to 3.

Similarly, climate negotiators are aware of the optimal long-term emissions targets.

7



C Additional figures and tables

Table C.1: Tests on treatment differences in all rounds emissions.

Average emission p-value Observations

Jonckheere-Terpstra test

Immediate > Halving > Persistent 8.2, 7.4, 7.3 0.134 15, 15, 15

Wilcoxon-Mann-Whitney tests

Immediate vs. Persistent 8.2, 7.3 0.494 15, 15

Immediate vs. Halving 8.2, 7.4 0.455 15, 15

Halving vs. Persistent 7.4, 7.3 0.430 15, 15

Note: All rounds of sequence 1 only. The unit of observation is a group. The null hy-
pothesis in JT and WMW tests is that the samples come from the same population. In JT,
the alternative hypothesis is that the medians are ordered by persistence as shown in the table.

Table C.2: Tests on treatment differences in rich and poor emissions.

Avg. rich emission Avg. poor emission p-value Observations

A. Round 1

Immediate 7 6.9 0.838 30, 30

Halving 5.8 6.7 0.079 30, 30

Persistent 4.8 6.6 0.052 30, 30

B. All rounds

Immediate 7.7 8.7 0.296 15

Halving 6.9 7.8 0.107 15

Persistent 7.1 7.5 0.389 15

Note: Sequence 1 only. The unit of observation is a participant emission in panel A.; the
unit of observation is the average emission of the rich and poor types in a group in panel B.
In panel A. are Wilcoxon-Mann-Whitney exact tests; in panel B. are Wilcoxon signed-rank tests.
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Table C.3: Tobit regressions of individual emission
with player type specific trend.

Dependent variable: Immediate Halving Persistent

Individual emission in a round (1) (2) (3) (4) (5)

Rich type –0.032 –1.068* –1.123** –1.026 –1.285

(0.901) (0.628) (0.471) (0.995) (0.961)

Round number within –0.029 0.192** –0.070* 0.648*** –0.381*

a sequence (0.023) (0.075) (0.042) (0.025) (0.203)

Trend within a 0.083*** 0.091*** 0.015 0.050 0.057

sequence for rich type (Round × Rich type) (0.029) (0.028) (0.017) (0.125) (0.132)

Stock of pollution 0.106*** 0.024***

at the beginning of a round (0.012) (0.005)

Sequence number 0.183 1.151*** 0.979** 0.501* 0.311***

(0.333) (0.364) (0.411) (0.266) (0.101)

Length of past –0.015 –0.148*** –0.005 –0.004 –0.002

sequence (0.101) (0.039) (0.043) (0.081) (0.029)

Mistakes in the quiz 0.243*** 0.606*** 0.486*** 0.449 0.200

(0.080) (0.175) (0.064) (0.344) (0.196)

Limited liability 4.665*** 1.447*** –1.298***

(0.366) (0.348) (0.352)

Constant 9.973*** 6.796*** 2.373*** 4.440** 7.251***

(1.470) (0.504) (0.639) (1.778) (1.157)

Observations 2380 2000 2000 2120 2120

Pseudo R2 0.010 0.042 0.084 0.048 0.069

Note: See notes to Table III.
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Table C.4: Tobit regressions of individual emission
without choices under limited liability.

Dependent variable: Immediate Halving Persistent

Individual emission in a round (1) (2) (3) (4) (5)

Rich type 1.142 –0.276 –0.926*** –0.676 –0.892

(0.874) (0.417) (0.319) (1.582) (1.507)

Round number within a sequence 0.015 0.273*** –0.078** 0.673*** –0.352

(0.042) (0.093) (0.036) (0.067) (0.272)

Stock of pollution at the beginning of a round 0.105*** 0.024***

(0.013) (0.005)

Sequence number 0.196 1.115*** 0.956*** 0.501* 0.312***

(0.342) (0.247) (0.320) (0.266) (0.102)

Length of past sequence –0.015 –0.168*** –0.026 –0.004 –0.002

(0.102) (0.039) (0.016) (0.082) (0.029)

Mistakes in the quiz 0.254** 0.733* 0.558** 0.450 0.202

(0.107) (0.440) (0.251) (0.346) (0.200)

Constant 9.368*** 6.037*** 2.439*** 4.264** 7.051***

(1.629) (0.872) (0.927) (2.107) (1.564)

Observations 2145 1658 1658 2120 2120

Pseudo R2 0.003 0.042 0.088 0.048 0.069

Note: See notes to Table III.
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Table C.5: Tobit regressions of differences in emissions’ trends at sub-sequence level.

Dependent variabe: (1) (2) (3) (4) (5)

Individual emission in a round
Rounds

1 to end

Rounds

1 to 20

Rounds

1 to 10

Rounds

11 to 20

Rounds

11 to end

Halving dummy –2.127 –1.463 –2.188* –6.221** –3.836**

(1.492) (1.411) (1.205) (2.659) (1.891)

Persistent dummy –4.758*** –3.418*** –3.169*** –10.870*** –9.266***

(1.252) (1.296) (0.863) (3.170) (2.618)

Round number within a sequence 0.013 0.224*** 0.292*** –0.163 –0.073***

(0.031) (0.086) (0.042) (0.117) (0.011)

Halving dummy × Round number within a sequence 0.246*** 0.144 0.365** 0.434** 0.261***

(0.067) (0.090) (0.175) (0.188) (0.073)

Persistent dummy × Round number within a sequence 0.649*** 0.434*** 0.407*** 0.992*** 0.882***

(0.066) (0.105) (0.094) (0.192) (0.141)

Rich type 0.075 –0.345 –0.537 0.382 1.321

(0.625) (0.559) (0.498) (0.881) (0.847)

Sequence number 0.528** 0.523** 0.512*** 1.402* 1.442**

(0.254) (0.232) (0.188) (0.723) (0.641)

Length of past sequence –0.065 –0.073 –0.081** 0.079 0.107

(0.042) (0.048) (0.037) (0.145) (0.099)

Limited liability 2.304*** 1.817*** 2.453*** 1.769 2.816**

(0.879) (0.601) (0.744) (1.188) (1.184)

Mistakes in the quiz 0.477*** 0.451*** 0.470*** 0.473*** 0.470***

(0.104) (0.124) (0.141) (0.171) (0.129)

Constant 9.194*** 8.201*** 7.987*** 10.220*** 8.081***

(1.192) (1.286) (0.909) (3.222) (2.342)

Wald test p -value: Having vs. Persistent dummy 0.043 0.088 0.377 0.135 0.085

Wald test p -value: Having vs. Persistent trend 0.000 0.000 0.833 0.007 0.000

Observations 6500 5380 3980 1400 2520

Pseudo R2 0.032 0.031 0.021 0.016 0.022

Note: Tobit regressions with observations censored at 1 and 18. The unit of observation is a participant in
a round. Every regression includes data from all three treatments. All sequences are included. On top of
each column are the rounds considered in the estimation, where “end” denotes the final round of a sequence.
Standard errors are clustered at the session level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table C.6: Treatment differences in the adoption of trigger Strategies.

Dep. var.: Trigger strategy = 1

(1)

Treatment dummies

Halving –0.099

(0.070)

Persistent 0.055

(0.052)

Rich type 0.017

(0.029)

Sequence number –0.006

(0.031)

Length of current sequence 0.011**

(0.004)

Length of past sequence –0.005

(0.005)

Wald test p-value: Having vs. Persistent 0.007

Observations 700

Note: Marginal effects from a Probit regression are reported. The unit of observation is a partici-
pant in a sequence. Only sequences that lasted three or more rounds are included. Standard errors
are clustered at the session level. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure C.1: Current emission over current emissions’ stock across groups in Persistent.
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Figure C.2: Current emission over current emissions’ stock across groups in Halving.
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D Experimental instructions (Persistent treatment)

Welcome!

You are going to participate in a study on economic decision-making funded by the Italian Ministry of
Instruction and Scientific Research.
Your earnings depend on yours and others’ decisions. Payment will be made in private at the end of
this study.
We ask you to follow these instructions carefully. It is not allowed to talk with other participants.
Please turn off you phone. If you have questions, raise your hand at any time and an assistant will
answer in private.

SEQUENCES AND GROUPS

This study consists of four independent parts - if there will be enough time - which we call “sequences”.
The instructions are the same for all sequences. Every sequence includes multiple rounds of interaction.

• Before every sequence, participants are matched in groups
of 4 members, two of type A and two of type B.

• Every type has different earnings. The type is randomly
assigned at the beginning of the study and remains fixed
throughout the study.

• Your group is fixed for the length of a sequence.

• Your group changes in the subsequent sequences. You will
never be matched with the same person in more than one
sequence.

EARNINGS

In every round, every participant chooses how much to produce from 1 through 18.
Your production has two effects:

1. It generates a revenue for you.
2. It creates a damage both for you and for the other members of your group.

Your earnings are determined by your revenue minus your damage and will be expressed in tokens.
For every 6 tokens you will earn 1 cent (e0.01). In addition you will receive e4 for your participation.
Your production in the round generates a revenue limited to the current round. However, it creates a
damage both in the current round and in the subsequent rounds.
Let us look at these effects in detail.

REVENUE

The more you produce, the more your revenue increases.
For every level of your production, you can see the generated revenue below:
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As you can see from the table, for the same production, a type B participant has always a lower revenue
than a type A. For example:

• A type A who produces 5 has a revenue of 530 tokens

• A type B who produces 5 has a revenue of 369 tokens

The revenue depends only on your production in the current round.
If you want to know it, the mathematical formula is the following:

Type A: My revenue = 100×logarithm(40×My current production)

Type B: My revenue = 100×logarithm(8 ×My current production)

Are there questions about the revenue?

DAMAGE

The more you produce, the more the damage increases.
The production affects both the revenue and the damage, but in different ways

• On the one hand, the revenue is only yours, while the created damage is equally split among
all group’s members.

• On the other hand, the revenue is immediately obtained in the round, while the damage hits
immediately but persists also in all the subsequent rounds.

Let us see the first feature of the damage. Every unit you produce in a round generates a damage that
reduces your earnings of 0.67 tokens. Moreover, it reduces in the same way also the earnings of every
member of the group and hence it generates a damage in the round to the group equal to 2.68 tokens
(=0.67×4).

Thus, to compute your damage from production, it is not enough that you only look at what you
produce. Instead, you have also to consider the sum of the productions of all the members of your
group in the round, namely the current “collective production”:

My damage from the current production = 0.67 × Current collective production

Example 1: We are in round 2 and everyone produces 3. The collective production of the group is
hence equal to 12 and creates a damage to you of 8 tokens in the current round (=0.67×12).
Moreover, it creates a damage of 8 tokens in the current round to every member of the group. How
much is your damage if instead you produce 1 and everyone else produces 5? The collective
production will be 16 and it will create a damage to you of 11 tokens in the current round
(=0.67×16).
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It does not matter whether you are type A or type B: the damage is equally split among all.
Let us now look at the second feature of the damage: the persistence. Every unit you produce causes a
damage in the current round, in the next one and all the subsequent rounds until the end of the
sequence. Earnings will reduce of 0.67 tokens for you and the other members of your group in every
round.

Example 2: We are in round 2 and the current collective production is equal to 20. Look the graph
below: your damage is 13 tokens in round 2 (=0.67×20), 13 tokens in round 3, and so on in every
subsequent round.

An important consequence of the persistence is that your total damage in a round depends both on the
current production and the past production.
My total damage in the round=

= My damage inherited from past production + My damage from current production
=(0.67×Sum of all past collective productions)+(0.67×Collective current production)

Example 3: In round 1, the collective production was equal to 27. We are in round 2 and the
collective production is 15. How much is your total damage in round 2? We must sum the damage
inherited from round 1 to the damage from the collective production in round 2. The total damage
is 28 tokens, 18 ow which inherited (=0.67×27) and 10 created by the current production
(=0.67×15). We can see this from the computation and the graph below.

My total damage in round 2 = Inherited damage + Damage from production in round 2

= (0.67×27) + (0.67×15)=18+10=28
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Because of the damage, your earnings in the round could be negative. In this case, the loss in the round
will be subtracted from the tokens accumulated in the previous rounds.
Every sequence is independent from the previous one: you will start every sequence without any
commitment on future damage due to the heritage of the past.
Are there questions about the calculation of the damage?

HOW MUCH TO PRODUCE

Let us see how one can think about how much to produce. Should I increase the production of
one unit? To answer, you can compare the additional revenue from a one unit increase in production
with the additional damage.
Focus for a moment only on your earnings. For example, if you produce 5 units instead of 4, your
revenue increases of 22 tokens, as you can see from the revenues table. Moreover, producing an
additional unit increases your damage of 0.67 tokens. However, it is not enough that you consider this
damage in the current round only: you must weight the damages that you create to yourself in all the
subsequent rounds. For example, if you expect that there are 13 rounds, producing an additional unit in
the current round increases your damage of 8.71 tokens (=0.67×13).
Consider now the effects on all the members of your group. For example, if you produce 5 units
instead of 4, your revenue increases of 22 tokens but no one else in the group benefits from it. Instead
the damage that you create is of 0.67 tokens for you and every member of the group, namely it is
multiplied by four (2.68 = 0.67×4). For example, when we consider damages over 13 current and future
rounds, the damage to the group increases of 34.84 tokens (=2.68×13). Following this reasoning, we
can compute that – if everyone chooses the same level of production throughout the sequence –
the earnings of the group are maximized when each one produces 3 units in every round.

RESULTS

At the end of each round, results will be displayed with a screen as the one below:
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DURATION OF A SEQUENCE

The duration of a sequence varies and is ex-ante unknown. The duration is determined as follows. At
the end of every round, the computer randomly draws a number from an urn which contains the integer
numbers from 1 to 100. Every number has the same probability of being drawn.

• If the number is less or equal to 92, the sequence continues with a new round.

• If the number is greater or equal to 93, the sequence ends.

So: after every round, there is 92% chances that there is another round in the sequence, and 8%
chances that the sequence ends. Following this procedure of random draws:

• It is never possible to know in advance which will be the last round of the sequence.

• One can calculate that a sequence will have an average duration of 13 rounds. However, you
can expect that some sequences will last much longer than 13 rounds and other much less.

QUIZ AND PRACTICE ROUNDS

We now ask you to answer 11 questions to verify your understanding of the instructions. Those who
do not answer satisfactorily will have a different task from that described above.
After the quiz, you will participate in a practice sequence. Unlike the subsequent sequences, in the
practice sequence: (a) you will not be paid for your decisions; (b) the sequence will last exactly 15
rounds; (c) the other members of your group will be robots who are programmed to choose a different
production level in every round.
Are there questions before proceeding?

——————

Before starting the four sequences, let us look at two final things.

RECORD SHEET

At the end of each round, we ask you to write down on paper the results in the round. In particular,

• Sequence and Round, that you will see on top of the screen,

• Your production and the production of everyone else that you see in the final screen of the
round in table (see screen at page 5). You can fill the production of everyone after having
marked down the ID of the participant to which the column refers.

SIMULATION TOOL

You can use a simulator to understand how the result changes as production choices vary. You can
make trials with the simulator without any consequence on your earnings. You can insert in the
simulator an hypothetical production for you and an hypothetical production for the other group
members. Hypothetical productions do not influence the outcome of the round.
By clicking the button “Simulate” the hypothetical results of these choices will appear with numbers
and graphs. Look at the picture below.

• You can see the “Hypothetical results in this round” in the table: revenues, damages, and
earnings of everyone

• You can see the “Hypothetical results in future rounds” on the graph

– Your earnings (white bars)
– Your damage created by the simulated collective production (gray bars)
– Your damage inherited from past decisions (black bars)

An important note on how to read the “Hypothetical results in the future rounds”. In the example
screen above, your simulated production is 3 units and the simulated production of the others is 4 units.
The hypothetical results illustrate the consequences when these levels of production is
maintained constant also for all the subsequent rounds. As you can see:
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- Your revenue is constant in all rounds (white bar)

- Your damage created by the simulated production (gray bar) increases over the future
rounds because the damage is persistent and so, with a constant production, the damage
cumulates.

Example 4: Let us consider again Example 3 where the collective production in round 1 was of 27
units. Now we are in round 2 and we use the simulator to compute the consequences of a collective
production of 15 units:

- Your revenue is equal to 479 tokens in every round (as you see in the revenues table when
you produce 3 units)

- The inherited damage is equal to 18 tokens in every round, as we have already seen in
Example 3 (=0.67×27)

- Your total damage in round 2 amounts to 28 tokens, see in “Hypothetical results in the
current round”: 18 are inherited and 10 are created by the production in round 2 (=0,67×15).
So in round 2 you earn 479–28 = 451 tokens

- Your total damage in round 3 amounts to 38 tokens, which corresponds to 18 inherited
(black bar), plus 10 created by the production in round 2, plus 10 created by the production
in round 3 (gray bar). So in round 3 you earn 479–38 = 441 tokens.

- Your total damage in round 4 amounts to 48 tokens, which corresponds to 18 inherited
(black bar), plus 10 created by the production in rounds 2, 3, and 4 (gray bar). So in round 4
you earn 479–48 = 431 tokens. And so on.

Let us perform one last practice round (round 16), in which you have 3 minutes to try the simulator.
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E Quiz (Persistent treatment)

1. How many independent sequences are there in this study? 1–10

2. You are at round 1 of a certain sequence. How many rounds do you expect there will be in the
sequence on average? 1–20

3. You are at round 13 of a certain sequence. With which probability do you expect that there will
be an additional round in the sequence? 0–100

4. TRUE OR FALSE? In every new sequence it is possible to meet again a participant that was in
my group in a previous sequence.

5. How much is the revenue of a type B who produces 4?

6. TRUE OR FALSE? For the same production level, type B participants always obtain a lower
revenue than type A participants.

7. COMPLETE THE SENTENCE: The collective production is computed. . .

(A) . . . by summing the production of the other group’s members in all rounds of the sequence.

(B) . . . by summing the production of all four group’s members (me included) in all rounds in
the sequence.

(C) . . . by summing the production of all four group’s members (me included) in a round.

8. COMPLETE THE SENTENCE: If I increase my production of one unit. . .

(A) . . . I create a damage to the group of 0.67 in the current round and in all the subsequent
rounds, which is equally split among the group’s members.

(B) . . . I create a damage to the group of 2.68 in the current round and in all the subsequent
rounds, which is equally split among the group’s members.

(C) . . . I damage to myself of 0.67 in the current round and in all the subsequent rounds.

9. COMPLETE THE SENTENCE: The more the other group’s members produce. . .

(A) . . . the less damages I suffer.

(B) . . . the more damages me and the other group’s members suffer.

(C) . . . the more damages the other group’s members suffer.

10. TRUE OR FALSE? The damage generated by the production reduces the earnings of types A
and B of different amounts.

11. COMPLETE THE SENTENCE: The damage I suffer in every round depends. . .

(A) . . . both on the collective production in the previous rounds and on the collective
production in the current round.

(B) . . . only on the collective production in the previous rounds.

(C) . . . only on the collective production in the current round.
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