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ABSTRACT  

Technological revolutions mark profound transformations in socio-economic systems. They are 
associated with the diffusion of general purpose technologies that display very high degrees of 
pervasiveness, dynamism and complementarity. This paper provides an in-depth examination of 
the technologies underpinning the ‘factory of the future’ as profiled by the Industry 4.0 
paradigm. It contains an exploratory comparative analysis of the technological bases and the 
emergent patterns of development of Internet of Things (IoT), big data, cloud, robotics, artificial 
intelligence and additive manufacturing. By qualifying the ‘enabling’ nature of these 
technologies, it explores to what extent their diffusion and convergence can be configured as the 
trigger of a fourth industrial revolution, and identifies key themes for future research on this 
topic from the viewpoint of industrial and corporate change.  
 
 
KEYWORDS: Industry 4.0; technological paradigm; enabling technology; general purpose 
technology; disruptive innovation. 
 
JEL CODES: O33; O31; L01.  
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1. INTRODUCTION 

Technological revolutions are associated with the emergence of “constellation of innovations” 

that profoundly transforms the economy, and more broadly social systems (Freeman and Louçã, 

2001; Perez, 2002; 2010). Examples of these technologies are water-powered energy and the 

steam engine, which shaped the British Industrial Revolution, then electricity, automotive 

technologies and more recently information and communication technologies (ICTs). 

Observation of such cyclical revolutions has provided the basis for the development of a theory 

of long cycles in economic growth where spells of high and low growth are tied to the rise and 

fall of waves of technical change (Freeman and Louçã, 2001). The economic literature has also 

linked this uneven development path to the emergence of a specific class of technologies, general 

purpose technologies (GPTs), characterised by pervasiveness, high dynamism and strong 

complementarities (Bresnahan and Trajtenberg, 1995; Jovanovic and Rousseau, 2005; 

Bresnahan, 2010). 

 

Understanding the effects of technological transformation requires opening up the "black box" of 

technology and explaining how, where and why they emerge and evolve (Rosenberg, 1982). 

Unique patterns of technical change develop through complex interactions of technical factors 

(e.g. characteristics of artefacts, their specifications and performance measures), the science 

base, and the broader institutional and economic context (Rosenberg, 1982, 1994). Dosi’s (1982) 

concepts of technological paradigms and trajectories provide an ideal framework for the study of 

innovative activities encompassing cognitive, technical, institutional and economic dimensions. 

While technological paradigms characterise and bind the potentially unlimited research space of 

a technology, technological trajectories identify local, cumulative, and irreversible patterns of 

development through time. This overarching framework is extremely useful to study emergent 

general purpose technologies and integrate contextual elements of institutional analysis into this 

approach.  

 

This is important because the identification, measurement and characterisation of technological 

paradigms not only help us understand the knowledge bases of economic systems, but also make 

it possible to study the effects different paradigms may have for the patterns of industrial 

dynamics and competitiveness (Schumpeter, 1942; Malerba and Orsenigo,1996; Breschi, 
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Malerba and Orsenigo, 2000). The potential for disruptive change specifically related to the 

development of GPTs has major implications for barriers to entry, market concentration, and the 

organisation of value chains between incumbents and new entrants (Tushman and Anderson, 

1986; Christensen, 1997). The expanding processes of digitalization and automation in 

manufacturing and services (Teece, 2018) make this kind of analysis all the more urgent because 

of their effects on productivity, wages and employment (Frey and Osborne, 2017; Acemoglu and 

Restrepo, 2017).  

 

There is yet no consensus as to whether we are observing the onset of a Fourth Industrial 

Revolution and whether this coincides with the Industry 4.0 paradigm. They are not synonyms. 

Industry 4.0 is the qualification of the ‘factory of the future’, shaped by policy interventions that 

have fostered the adoption of smart manufacturing technologies in Europe, and resulting from 

the convergence of a new wave of operational technologies with Internet-driven IT (Kagermann 

et al., 2013). This might be a fundamental component of a Fourth Industrial Revolution, but does 

not coincide with it because of its still relatively limited scale and scope. A similar difference 

exists, as Teece (2018) points out, between the notions of general purpose technology vis-à-vis 

enabling technology. Contrary to the concepts of technological paradigm (Dosi, 1982) and 

general purpose technology (Helpman, 1998), the concept of ‘enabling technologies’ has not 

been well defined in the academic literature because it has emerged in the policy arena to profile 

groups of technologies that can contribute to innovation and productivity growth in many sectors 

of the economy (Commission of the European Communities, 2009), and therefore identified 

primarily as industrial policy targets (European Commission, 2017). Paradigm changes and 

GPTs are much rarer than enabling technologies, but some enabling technologies may become 

GPTs (Teece, 2018) and trigger paradigmatic change. This may happen with Industry 4.0 

technologies due to transformative potential of current trends in digitization and automation, and 

in particular the convergence (or recombination) of some incumbent and some rapidly 

developing new manufacturing technologies.  

 

This paper provides an in-depth examination of the enabling technologies underpinning the 

Industry 4.0 paradigm. It contains an exploratory comparative analysis of the technological bases 

and the emergent patterns of production and use of Internet of Things (IoT), big data, cloud, 
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robotics, artificial intelligence and additive manufacturing. We rely on primary and secondary 

data sources to reflect on the development of these technologies. One of the problems faced in 

empirical research on these topics is the lack of systematic information on the adoption of new 

technologies. This is a major drawback considering that the revolutionary potential of new 

technologies resides in their use, diffusion and adaptation. However, and despite well-known 

limitations, patents are a powerful instrument to study of the sources and flows of technological 

knowledge. We therefore use them to identify the emergent features of the six enabling 

technologies.   

 

The paper is structured as follow. In the next section contains a brief overview of the Industry 

4.0 (I4.0) technological context. Section 3 presents extensive patent analyses of the distribution 

of inventive efforts, their patterns of accumulation, and their relations and similarities. This 

includes an evaluation of the characteristics of GPTs of the enabling technologies, their 

knowledge bases and their use. Section 4 discusses the complex dynamics characterising the 

diffusion of Industry 4.0. Section 5 draws the contribution to a close.   

 

2. THE TECHNOLOGICAL BOUNDARIES OF ‘INDUSTRY 4.0’ 

Industry 4.0 is not a single technology but rather appears as a cluster of different technologies 

that are de facto agglomerated together by technological leaders, pivotal users, system integrators 

and government policy makers. Figure 1, synthetises the concept by illustrating the core 

technologies of Industry 4.0, with cloud manufacturing connecting industry devices through 

sensors and digital twins, and manufacturing execution systems (MES) that keep control of the 

whole factory streams through manufacturing analytics. It is clearly a complex architecture 

characterized by old technologies paired with new ones, all interconnected by cloud-based 

Internet. In more detail, the technologies are:  

− IoT. IoT entails devices with self-identification capabilities, localisation, diagnosis status, 

data acquisition, processing, implementation that are connected via standard 

communication protocols. IoT technologies are used in I4.0 manufacturing applications, 

and in many others (housing and construction, automotive, environment, smart city, 

agriculture, health, etc.). In relation to the Industry 4.0, IoT applications are specific of the 

so called "industrial Internet". 
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− Big Data/Industrial Analytics. This includes methods and tools to process large volumes 

of data for manufacturing, supply chain management and maintenance. The data can 

come from IoT systems connected to the productive layer (for example with sensors and 

associated equipment), or the exchange between IT systems for production and 

warehouse management. Specific applications in this area are machine learning tools for 

planning and forecasting, predictive maintenance, and simulation.  

− Cloud Manufacturing. Cloud Manufacturing encompasses the application in 

manufacturing of cloud technologies, with widespread access, easy and on-demand IT 

services – infrastructure, platform or application – to support production processes and 

supply chain management. Cloud manufacturing ranges from the virtualization of physical 

resources necessary for factory equipment to applications, data and processes across 

platforms and execution-and-collaboration tools, and hosted in the Cloud. 

− Robotics. The robotics cluster includes SCARA, Articulated, Cartesian, Dual Arm and 

Co-bots (see section 2.4 for precise definitions) as different ways to automate production 

tasks. Advanced automation encompasses the latest developments in production systems 

with improved ability to interact with the environment, self-learning and automatic 

guidance, the use of vision and pattern recognition. 

− Artificial Intelligence (AI). It concerns the knowledge and techniques developed to make 

machines ‘intelligent’, that is to say able to function appropriately also through foresight in 

their environment of application. Industrial AI refers to the computer science-based 

technologies which, coupled with machine learning, are used to generate intelligent sensors, 

edge computing, and smart production systems. 

− Additive Manufacturing, also known as 3D Printing. It consists in the production of 

objects by depositing layer upon layer of material in exact geometric shapes. Additive 

Manufacturing finds application in the prototyping (to support the product development 

process, static simulation and wind tunnel, etc.), manufacturing (direct production of 

products), maintenance & repair and modelling phases.1  

We now a brief overview of each group of technologies.  

                                                 
1 The US International Standard Organization defines the following seven categories of additive manufacturing 
processes: Binder Jetting, Directed Energy Deposition, Material Extrusion, Material Jetting, Powder Bed 
Fusion, Sheet Lamination and Photo polymerization (as per ISO TC 261, 2011). 
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2.1 IoT 

The concept of IoT was introduced in the 1980s at Carnegie Mellon where a modified Coke 

dispenser was made able to report its inventory and signal whether newly loaded drinks 

were cold through the Internet. IoT became popular in 1999 in the Auto-ID Center at MIT, 

with Radio-frequency identification (RFID) (Zhang et al., 2011; Chopra and Sodhi, 2007; 

Kubac et al., 2013; Liu and Chen, 2009). Several companies then introduced correlated 

concepts, including Olivetti, Xerox, IBM and universities such as Carnegie Mellon and MIT 

itself, but it was Siemens who introduced a machine-to-machine (M2M) GMS connected 

system in 1995 (Benrachi-Maassam, 2012; Kima et al., 2017). Open source dynamics, like 

in many other IT segments, often pushed the development of IoT, as clearly illustrated by 

the adoption in 2003 of the (open source-based) JXYA standard as a universal peer-to-peer 

standard to connect electronic things. After that, diffusion of the technology was boosted by 

the introduction of a low price, single board, electronic things controller, which originated in 

2005 from the Interaction Design Institute Ivrea through the open-source electronics platform 

Arduino. Through this, IoT has progressively become a relevant offering for chip players as 

well as sensors producers, gateways hardware producers and software and machine 

developers for IoT platforms. 

 

The basic disciplines at the roots of IoT are computer science, communication and 

information technology and electronics. The core technologies needed to build an IoT 

device are semiconductor technologies, internet, sensor technologies and more generally 

microelectromechanical systems. Within these core technologies, IoT incorporates 

Bluetooth technologies, low consumption battery technologies, laser technologies, smart 

cameras technologies, smart meters and sensors for energy consumption. Within this 

heterogeneous assemble of different devices and solutions there are at least three 

technological clusters: devices, software platforms, and gateways and other networking 

elements. IoT technologies are still in an early stage of development and consequently 

characterized by an unstable competitive and technological environment. Technical 

challenges of this kind of environment include: data exchange among large scale 

heterogeneous networks elements, integration and interaction adaptation of uncertain 

information, service adaptation in dynamic system environment.  
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There are structured data on R&D spending specific to IoT, and we do not have any specific 

on the subsystem of Industrial IoT (IIoT). Investments in these technologies are driven by 

private companies. IBM, Google, Samsung, SAP, Dell, Siemens and Intel seem to be the 

companies investing more (Lueth, 2015), but it is very difficult to identify a clear 

technology leader in both devices and platforms, also due to the vast number of different 

technologies and sectors involved. Interestingly, the growing interest of large companies in 

acquiring IoT capabilities seem to be driving a wave of consolidation in the industry, as 

signaled by the acquisition of Nest and CSR by Google and Qualcomm respectively.  

 

2.2 Big Data/Industrial Analytics 

Big data analytics is the process of examining large and varied data sets to uncover hidden 

patterns, unknown correlations, market trends, customer preferences and other useful 

information that can help organizations make more-informed business decisions. The term 

big data was first used to refer to increasing data volumes in the mid-1990s, and later 

expanded to also capture increases in the variety of data and the pace at which they were 

generated. A manufacturing analytic system starts out with a data acquisition system that 

can either be built-in by the original equipment manufacturer (OEM) or a third-party 

provider. Using appropriate sensor assemblies, various signals such as vibration, pressure, 

temperature, etc. can be recorded. The types of signal and data acquisition parameters are 

determined by the application and the failure modes of the asset being monitored. 

Communication protocols, such as MT Connect and OLE-DB Process Control or OPC, can 

help users to acquire process or controller signals. Such data can provide context as to the 

type of action/function the machine was performing when sensor data was being collected. 

The aggregation of all information results in “Big Data” because of the volume of data 

collected, velocity by which data is being received and variety of data that are being 

collated. Such phenomenon requires new analytical approaches in place of standard 

statistical process control or other traditional techniques.  

 

Several components are at play in this space: an integrated platform, predictive analytics and 

visualization tools. The deployment platform is selected based on several factors such as 

speed of computation, investment cost, and ease of deployment for scaling purposes and 
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update. The actual processing or transformation of big data into useful information is 

performed by utilizing predictive analytics such as the tools found in the Watchdog Agent 

toolbox that has been developed by researchers at the National Science Foundation (NSF) 

Industry/University Research Cooperative Center (I/UCRC) for Intelligent Maintenance 

Systems (IMS) since 2001. There are also other commercial predictive analytic providers 

such as IBM, Hadoop, SAS, and SAP. The Watchdog Agent algorithms exemplifies the 

working of this technology. It can be categorized into four sections, namely: signal 

processing and feature extraction, health assessment, performance prediction and fault 

diagnosis. By utilizing visualization tools, health information such as current condition, 

remaining useful life estimation, root cause, etc., can be effectively conveyed using radar 

charts, fault maps, risk charts and even health degradation curves. The calculated health 

information can then be forwarded or made available to existing company management 

systems such as enterprise resource planning system (ERP), manufacturing execution 

system (MES), supply chain management system (SCM), customer relation management 

system (CRM), and product lifecycle management system (PLM) to achieve overall 

enterprise control and optimization.  

 

The Hadoop distributed processing framework was launched as an Apache open source 

project in 2006, planting the seeds for a clustered platform built on top of commodity 

hardware and geared to run big data applications. Initially, as the Hadoop ecosystem took 

shape and started to mature, big data applications were primarily used by large internet and 

e-commerce companies, such as Yahoo, Google and Facebook, as well as analytics and 

marketing services providers. In ensuing years, though, big data analytics has increasingly 

been embraced by retailers, financial services firms, insurers, healthcare organizations, 

manufacturers, and energy companies. While we do not have precise data on R&D 

expenditure on manufacturing Big Data tools, the growth of activities in this area indicates a 

rapid increase in commercial interest in the field (IDC, 2018).  

 

2.3 Cloud Manufacturing 

Cloud manufacturing is a new set of IT service delivery models. It can be can be divided 

into two categories. The first category is concerned with the deployment of manufacturing 
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software on the Cloud, i.e. a “manufacturing version” of computing. The second category 

has a broader scope, cutting across production, management, design and engineering 

abilities in a manufacturing business. Unlike with computing and data storage, 

manufacturing involves physical equipment, monitors, materials, etc. In this kind of Cloud 

Manufacturing system, both material and non-material facilities are implemented on the 

Manufacturing Cloud to support the whole supply chain. In Cloud Manufacturing System, 

various manufacturing resources and abilities can be intelligently sensed and connected 

through the Internet, and automatically managed and controlled using IoT technologies 

(e.g., RFID, wired and wireless sensor network, embedded system).  

 

Several industrial players developed products in this space. In 2006 Amazon introduced its 

Elastic Compute Cloud. Microsoft Azure was announced as "Azure" in 2008 and released in 

2010 as Windows Azure, before being renamed to Microsoft Azure in 2014 (for a time, 

Azure was on the TOP500 supercomputer list, before it dropped off it). In July 2010, 

Rackspace Hosting and NASA jointly launched an open-source cloud-software initiative 

known as OpenStack. The OpenStack project intended to help organizations offering cloud-

computing services running on standard hardware. The early code came from NASA's 

Nebula platform as well as from Rackspace's Cloud Files platform. In 2011, IBM 

announced the IBM Smart Cloud framework to support Smarter Planet. Among the various 

components of the Smarter Computing foundation, cloud computing is a critical part. In 

2012, Oracle announced the Oracle Cloud. While aspects of the Oracle Cloud are still in 

development, this cloud offering is poised to be the first to provide users with access to an 

integrated set of IT solutions, including the Applications (SaaS), Platform (PaaS), and 

Infrastructure (IaaS) layers. In April of 2008, Google released Google App Engine in beta. 

In 2012, Google Compute Engine was released in preview, before being rolled out into 

General Availability in 2013.2  

 

The field is a combination of applied research on virtualization, fast Internet, memory 

computing, and firewall technologies. Red Monk (2017) report some figures on the R&D 

                                                 
2 For extensive analyses of Cloud Manufacturing see: Caldarelli et al. (2016), Wei et al., (2013), Wu et Al., (2015), 
Putnik (2012), Hashem et al. (2014), Ren et al. (2014). 
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expenditure of cloud computing companies.3 From 2014 to 2017, in percentage terms over 

their total R&D expenditure, IBM grew from 5% to 6%, Amazon from 8% to 12.5%, 

Microsoft from 13% to 15% Google from 12,5% to 16% and Oracle from 13% to 16%. In 

absolute terms, the available data show a substantial gap between the top-tier cloud 

providers (Amazon, Microsoft, and Google) and their competitors.  

 

2.4 Robotics 

Since the invention in 1954 of George Devol’s first digitally operated and programmable 

robot, sold to General Motors in 1960, the advancements of robotics are well documented in 

the literature since the field is well established and commercial and industrial robots are in 

widespread use. Robots are used in manufacturing, assembly and packing, transport, earth 

and space exploration, surgery, weaponry, laboratory research, and mass production of 

consumer and industrial goods. With recent advances in computer hardware and data 

management software, artificial representations of humans are also becoming widely spread, 

and artificial intelligence and machine learning are contributing to the development of 

modern flexible robots. Fundamental components of the robotic industry are sensors, 

actuators, power conversion units, manipulators, and software. Relative to other fields, we 

have much better data on R&D expenditures and markets. As far as R&D expenditures are 

concerned, the three major spenders (KUKA, ABB and YASKAVA) account for more than 

70% of sales, and increasing investments.4  

 

Industrial robots are typically classified in the following groups: SCARA, Articulated, 

Cartesian, Dual Arm and Co-bots. SCARA (Selective Compliance Assembly Robot Arm) is 

a type of robot which moves an "arm" on the horizontal plane and an outlet that can rise and 

fall in the vertical one. This type of robot was developed for high speed and repeatability in 

series assembly, such as Pick-and-Place from one place to another. An Articulated robot is a 

robot with rotary joints (e.g. a legged robot or an industrial robot), that can range from 

simple two-jointed structures to systems with ten or more interacting joints. They are 

                                                 
3 https://redmonk.com/rstephens/2017/09/26/cloud_rd/. 
4 Figures have been obtained from the three companies’ 2018 Annual Reports. 

https://redmonk.com/rstephens/2017/09/26/cloud_rd/
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powered by a variety of means, including electric motors. A Delta robot is a type of parallel 

robot. It consists of three arms connected by universal joints to the base. The key feature of 

the design is the use of parallelograms in the arms, which maintain the orientation of the end 

device. Delta robots are usually used in picking and packaging in factories because they are 

fast enough to run more than 300 outlets per minute. Cartesian robots (or Gantry robot) are 

used for pick-and-place work, application of sealant, assembly operations, handling machine 

tools and arc welding. They are robots whose arms have three prismatic joints, and axes are 

coincident with a Cartesian coordinator. Dual Arm robots are robots in which each of a pair 

of robotic arms has an anthropomorphic elbow, and configurations with six joints: there are 

three joints at the wrist that support the gripper (the end-effector) and the arm itself has three 

more joints to position the wrist at the desired location. Finally, Cobots or co-robots (from 

collaborative robot) are robots designed to physically interact with humans in a shared 

workspace. This is in contrast with other robots, designed to operate autonomously or with 

limited guidance, which is what most industrial robots were up until the 2010s. 

 

To date, the world market for industrial robots is worth about 11B$ (on a total of 27B$) with 

steady, if not especially fast, growth rates (International Robotic Federation, 2017). The 

market appears to be highly concentrated (in 2014 the top four manufacturers delivered 

robot units amounted to approximately 70% of the total robot units delivered worldwide in 

that year) and is signaling faster growth in easy-to-use collaborative robots, and a growing 

presence, through acquisitions, of new Chinese producers.  

 

2.5 Artificial Intelligence  

Attempts to mechanise human intelligence have a relatively long history (Nilsson, 2010), but the 

development of modern AI – the term was coined back in 1954 by John McCarthy as the topic of 

a conference at Dartmouth – is intimately related to progress in computing technologies and to 

recent advancements in machine learning and predictive processes. AI includes various areas of 

research and it is often difficult to draw precise boundaries. Its core components can however be 

identified with machine learning, deep learning, NLP (natural language processing) platforms, 

predictive APIs (application programming interface), image recognition and speech recognition.  
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Global R&D spending in AI is fast increasing, both in the form of internal research in large tech 

firms’ labs (i.e. Goole and Baidu), but also through VC-backed start-ups, often financed by 

corporate investments. Investments appear to be in the order of $25 to $35 billion (MGI, 2018). 

Machine learning is the largest recipient of funds. Lee et al. (2018) note that the success of AI in 

industrial applications has so far been quite limited. However, industrial AI is fast improving as a 

systematic field of research, focused on developing, validating and deploying reliable machine 

learning algorithms for industrial applications. Demand for is also expected to growth 

significantly over the next few years, with early industrial adopters clustered in the finance and 

banking, retail and manufacturing sectors. Industrial applications have so far been concentrated 

in autonomous robots, digital assistants, neurocomputers, machine monitoring and control 

systems, and expert systems such as healthcare decision and smart grid systems.   

 

2.6 Additive Manufacturing 

In 1981, Hideo Kodama of Nagoya Municipal Industrial Research Institute published his 

account of a functional rapid prototyping system using photopolymers. A solid, printed 

model was built up in layers, each of which corresponded to a cross-sectional slice in the 

model. Then, the invention of stereolithography in 1984 let designers create 3D models with 

digital data, which could then be used to create tangible objects. The key to 

stereolithography is a kind of acrylic-based material known as photopolymer. The process 

starts with a hit on a vat of liquid photopolymer with a UV laser beam, so that the light-

exposed portion turns into solid piece of plastic, and is then molded into the shape a 3D-

model design. Interestingly, in that same decade (the 1980s) 3D printing crossed path with 

the open-source movement and this interaction continued over time until in 2005 Adrian 

Bowyer’s RepRap Project launched an open-source initiative to create a 3D printer that 

could essentially build itself, or at least print most of its own parts. The first 3D printing 

machine became commercially viable in 2006, and this opened the door to on-demand 

manufacturing of industrial parts. 3D-printing startup Objet (now merged with Stratasys) 

built a machine that could print in multiple materials, which allowed a single part to be 

fabricated in different versions and with different material properties. With the entry of 

MakerBot, an open-source DIY kit became available for makers to build their own 3D 

printers and products. With open source kits the barriers to entry for designers and inventors 
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started to fall. While the price of 3D printers has fallen rapidly in recent years, the accuracy 

of 3D printing has significantly improved, and designers are no longer limited to printing 

with plastic.  

 

The field of 3D printing has been growing rapidly for years. It has applications in many 

sectors as diverse as healthcare, aerospace, and parts replacement. This is an industry with 

large commitment to R&D with three-year average year (2014-2017) spend of $309 million 

for all top six companies (Stratasys, Renishaw, 3D Systems, Organovo, ExOne, Arcam)5. 

Interestingly, Arcam has recently been acquired by General Electric for its multiple potential 

applications, ranging from aircraft components and medical equipment, to oil and gas 

equipment).  

 

3. THE KNOWLEDGE BASES OF I4.0 ENABLING TECHNOLOGIES  

Having profiled the boundaries and building blocks of Industry 4.0, we now turn to an in-depth 

analysis of the knowledge bases of these technologies. We collected patent data for each 

enabling technology under examination. The main questions to be concern the distribution of 

inventive efforts, their patterns of accumulation, and their relations and similarities. 

 

3.1.  Data and sample construction 

Data were retrieved from the EPO-PATSTAT database (2018 Autumn Edition) but limitedly to 

granted United States Patent and Trademark Office (USPTO) patents filed between 1990 and 

2014. Because of the relevance of the US market and the global nature of the actors involved, 

this choice does not introduce any significant home bias effects. We sampled patent records by 

following the search strategies documented in the literature and fully illustrated in Table 1, 

which also reports all the specific sources.   

 

<< INSERT TABLE 1 ABOUT HERE >> 

 

The final dataset includes 363,803 patents: of which 188,319 (51.8%) related to IoT, 130,604 

(35.9%) related to Big Data, 17,732 (4.9%) related to Robotics, 15,480 (4.3%) related to 3D 

                                                 
5 Figures from the companies’ Annual Reports. 



15 
 

Printing, 5,930 (1.6%) related to Artificial Intelligence, and 5,738 (1.6%) related to Cloud. The 

bar chart in Figure 1 shows an increase over time in the total number of patents filed each year, 

even though at variable rates. The line graph in Figure 2 captures the 3-year average growth rate 

of patent numbers, indicating almost a decade (from 1997) of positive but decreasing growth 

rate.  

<< INSERT FIGURE 2 ABOUT HERE >> 

 

Table 2 highlights some differences in the number of patents and average growth rates over five 

periods and across technologies. Cloud and IoT are the technologies with more systematic high 

growth, that is to say that they grew more than the total in every period (except for Cloud in 

1996-2000). However, after 2005, also Robotics and AI display high rates of growth clearly 

indicating increased innovative efforts in these areas. Conversely, 3D printing displays a 

dynamic more in line with a mature technology with decreasing levels of opportunities over 

time.  

<< INSERT TABLE 2 ABOUT HERE >> 

 

3.2.  Geographical and organisational distribution of patents 

Patents carry essential information on who are the innovators and their geographical location.  

The strong technological opportunities that characterise emerging technologies are generally 

associated to low level of concentration of innovative activities, high entry rates and turbulence 

in the ranking of innovators (Breschi et al., 2000; Malerba and Orsenigo, 1996a; 1996b; 1997). 

Figure 3 displays the evolution of the concentration of the innovative activities in each enabling 

technology measured using the C4 indicator and the Herfindahl–Hirschman Index (HHI).  

 

<< INSERT FIGURE 3 ABOUT HERE >> 

 

C4 measures the share of patents filed by the top 4 innovators; whereas, HHI index captures the 

dispersion of these shares. Figure 3 reveals that Cloud is the technology where inventive 

activities are more concentrated; however, a relatively higher level of the HHI index indicates 

that these inventors are relatively larger than in the other technologies. The other five 

technologies display more similar patterns, featuring a modest increase in the share of top 
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inventors (especially for Robotics and Big data) coupled with a somewhat stable presence of a 

large number of smaller size players.  

 

<< INSERT FIGURE 4 ABOUT HERE >> 

 

Figure 4 reports the evolution of the Spearman correlation for the ranking of the top 20 

inventors. The Spearman correlation picks up the extent to which two variables have similar 

ranks. It varies between -1 and 1, moving from an opposed to identical correlation. Spearman 

correlation can therefore be used to capture the degree of technological turbulence in a field. 

Figure 3 shows some differences among the six technologies under examination. Differently 

from the other technologies, Cloud and Robotics show a marked increase in the stability of 

inventors over time. This result, coupled with the previous, suggests a pattern of consolidation of 

technological leadership in Cloud technology. Conversely, AI shows a very low level of stability, 

denoting high mobility within the group of top inventors.  

 

<< INSERT TABLE 3 ABOUT HERE >> 

 

Besides these general trends, it is interesting to zoom into each technology and identify the top 

inventors. Table 3 reports the list of the top 4 inventors in each technology for the period 1990-

1995 and the period 2010-2014. The most striking result is that IBM is the only company able to 

maintain the technological leadership in four out of the six technologies (i.e. AI, Big Data, 

Cloud, and IoT). Even in technologies characterised by an overall low level of instability, the top 

positions are in the long run rather precarious. Interestingly, the most patent-active companies in 

the two periods are very different also as far their sector of reference is concerned. While in the 

period 1990-1996, technological leadership is held by either hardware, cars, and telephone 

manufacturers; in the second period companies are more focused on software and services. This 

transition is also true for IBM, a company that over the years has changed considerably its core 

businesses away from hardware manufacturing and towards information services.   

From a geographical point of view, we observe in Table 3 an increasing concentration of 

activities in the United States, with Japan losing significant technological opportunities. Table 3 

also reveals that technological leaders tend to overlap across the six enabling technologies. 
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Strong complementarities in use could explain the tendency of these companies to develop 

technological capabilities that strand across all enabling technologies. The percentage of 

inventors active in more than one technology in the period 1990-1995 is 39% of the set, 

increasing to 44% in the period 2010-2014. Unreported graphs (available upon request) of the 

distribution of patent portfolio size by number of technologies show that a limited group of very 

large multi-technology firms drives this trend. 

 

<< INSERT FIGURE 5 ABOUT HERE >> 

 

Different patterns of entry can trigger different technological dynamics. While we observe an 

increasing number of inventors in each technology, it is important to distinguish whether they are 

really new entrants or they just enter in a technology field while being active already in another 

technological space. An increase in the latter category can indicate patterns of consolidation 

bewteen complementary technologies. Figure 5 shows that the share of entrants from another 

technology is overall increasing over time. AI and Cloud attract the largest share of entrants from 

related technologies, pointing to their key integrating role among the six enabling technologies.  

 

3.3.  ‘Enabling’ or ‘general purpose’ technologies? 

The six enabling technologies we examine in this paper are often bundled together in the 

characterisation of the factory of the future. However, the extent to which these technologies are 

similar to one another can to be subjected to an empirical test. In this section, we evaluate the 

extent to which the six enabling technologies can be considered as general purpose technologies 

(GPTs). Bresnahan and Trajtenberg (1995) define GPTs as technologies characterised by i) 

pervasiveness (i.e., with a broad range of possible application sectors), ii) high technological 

dynamism (i.e., significant potential for increasing efficiency), and iii) the ability to generate 

complementarities (i.e., their adoption stimulates rapid technical progress in the application 

sectors). How do our six enabling technologies fare against these three criteria?  

 

Following the literature, we examine how these technologies score on three patents indicators 

generally associated with GPTs: generality, originality, and longevity. The generality index is 

used to assess the range of later generations of inventions that have been promoted by a patent, 
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by measuring the range of technological classes that cite that patent (Trajtenberg et al., 1997). 

This indicator is based on the HHI index and relies on information about the number of forward 

citations and their distribution across International Patent Classification (IPC) technology 

classes. It ranges from 0 (when all the citations received from the patents are from the same 

technological classes) to 1 (when all the citations are equally spread across different 

technological classes). The rationale of this indicator is that the larger it is, the more 

technologically widespread is the effect of a patent, which is consistent with the definition of a 

GPT (Hall and Trajtenberg, 2004). 

 

The originality index is similar to the generality indicator, but it focuses on backward citations 

by measuring the range of technological classes that are cited by the patent (Trajtenberg et al., 

1997). The more diverse the technological base upon which a patent is built, the more potential 

for new recombination. This indicator is also based on the HHI index and relies on information 

about the number of backward citations and their distribution across IPC classes. It ranges from 0 

(when all the citations made by a patent are from the same technological classes) to 1 (when all 

the citations are equally spread across different technological classes). High originality correlates 

with the high technological dynamism that is typical of GPTs (Trajtenberg et al., 1997; Moser 

and Nicholas, 2004). Both the generality and originality indicators are retrieved from the OECD 

Quality database (Squicciarini et al., 2013). Finally, patent longevity measures the speed of 

obsolesce of a specific patent. As it was found for electricity (Moser and Nicholas; 2004), GPTs 

are expected to have lasting effects on subsequent technological development and therefore to 

become obsolete less fast. Following Moser and Nicholas (2004), we measure patent longevity 

as the maximum lag (in years) between the year of patent grant and the year of the latest forward 

citation. Longevity was calculated using the OECD Citations database (March 2018 version).   

 

<< INSERT FIGURE 6 ABOUT HERE >> 

 

In order to account for potential differences in the measure that might be due to specific 

technological characteristics, time trends, and vintage, we normalise them using the average of 

these indicators for patents filed in the same year in the same technological field. Figure 6 

displays the evolution of these three indicators over time. Values are above the reference line 
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indicates that patents have a higher average value than patents in the same technological field 

and filed in the same year. Figure 6(a) shows that AI, IoT, 3D Printing, and Robotics are more 

general than comparable patents. On the contrary, Big Data and Cloud are characterised by less 

widespread technological impact. Figure 6(b) shows that Cloud and Big Data have a comparably 

lower level of originality, but the latter is always above the reference line. Interestingly, AI 

displays a decreasing level of originality, perhaps suggesting a reduction over time in the scope 

of the recombined knowledge base. Finally, Figure 6(c) displays a more stable trend, almost 

always above the reference line, indicating that patents in the examined technologies have a low 

rate of obsolescence than comparable patents. All in all, we find evidence of heterogeneity in the  

pervasiveness, originality and longevity of the six I4.0 enabling technologies, despite their 

complementarity in use.  

 

3.4. Sources and uses of technological knowledge 

The previous section focuses on technological relations based on patent citations (both backward 

and forward) and IPC classes. IPC classes are very informative about patents technological 

domain, but they cannot be straightforwardly related to industries. The two concepts can be 

tightly interrelated when they are both defined at a low level of granularity; however, numerous 

technologies cut across several industries. This section presents two specular exercises. First, we 

examine the industrial knowledge base used by the six enabling technologies to uncover 

common roots. Second, we examine the industrial applications of these enabling technologies to 

uncover joint applications. To carry out these two analyses we use data on the industrial 

classification of both the cited and citing patents of enabling technologies. Van Looy et al. 

(2015) provides a concordance table between IPC classes and 2-digit NACE (Rev. 2), which 

makes it possible to associate any patent to one or more 2-digit NACE (Rev. 2) codes. The EPO-

PATSTAT Database provides this information we use in this analysis.   

 

<< INSERT TABLE 4 ABOUT HERE >> 

 

Table 4 shows backward citations over NACE classes and the C4 and HHI indices to evaluate 

their relative importance, thus indicating the industrial knowledge base behind each enabling 

technology. Table 4 reveals the presence of three patterns of use. AI, Big Data, Cloud and IoT 
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have strong commonalities rooted in the manufacturing of computer, communication equipment, 

and office machinery. However, the relative importance of these sources varies: for Cloud and 

IoT these represent more than 85% of the used industrial knowledge base; whereas, for AI and 

Big Data, these industries represent the 67.8% and 78.2%, respectively. 3D Printings and 

Robotics display completely different industrial knowledge, both between them, and between 

them and the other four technologies. These differences hint to a pattern of technological 

development running apart from, or in parallel to, the other enabling technologies.  

 

<< INSERT FIGURE 7 ABOUT HERE >> 

 

Another way to identify common patterns of development is measuring the similarity of 

technological domains used by each enabling technology. Cosine similarity, which has been 

extensively used to measure technological distance with patent data (Jaffe, 1986; 1989), can be 

fruitfully adapted to this context. Proximity between firms is typically measured by comparing 

vectors that represent firms’ shares of patents in each patent class. In this case, the similarity in 

industrial knowledge bases can be measured by comparing vectors of the shares of cited 

industrial technological domain for each enabling technology in each year. Figure 7 presents the 

evolution of the cosine similarity in the used industrial knowledge base over time and across 

technologies. Cloud, Big Data and AI display remarkably stable patterns over time, which are 

rather similar to one another. This points to the presence of a long-term pattern of joint 

development between these three enabling technologies. IoT displays a similar trend but with 

consistently lower levels of similarity. Robotics has a less stable pattern of industrial use 

similarity characterised by convergence towards AI in the late 1990s. 3D Printing is the enabling 

technology with less similar industrial roots relative to the other technologies; it does, however, 

converges towards Robotics and diverges from Big Data. 

 

<< INSERT TABLE 5 ABOUT HERE >> 

 

Table 5 reports forward citations shares over NACE classes and the C4 and HHI indices to 

evaluate their relative importance. This indicates the industrial classes of application of the 

inventions developed within in enabling technology. AI, Big Data, Cloud and IoT appear to 
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promote further technical advancement in the same industries, namely manufacturing of 

computer, communication equipment, and office machinery. The comparison of the C4 and HHI 

indicators presented in Table 4 and Table 5 indicates that industrial application is more 

concentrated than the industrial knowledge bases. In a nutshell, this suggests that the 

recombination of a broader industrial knowledge base is associated with a narrower range of 

industrial applications. This contrasts with the idea that that all these technologies should 

promote ‘downstream’ innovation in a wide range of industries. 

 

<< INSERT FIGURE 8 ABOUT HERE >> 

 

Figure 8 reports the evolution of cosine similarity measures in the application industry. Cloud, 

Big Data, and AI display a stable pattern of similar application. IoT also displays a comparable 

pattern of similarity, in contrast with what we found for the used industrial knowledge bases. 

This suggests that IoT recombines more diversified industrial knowledge bases that produce 

applications in a more similar group of technologies. 3D Printing displays a clear pattern of 

divergence from Robotics, coupled with a stable low level of application similarity to most of the 

other enabling technologies. Interpreting this result in the light of the content of Figure 6 

suggests that 3D printing is diverging from Robotics in its industrial application, but is slowly 

converging with it in terms of their used industrial knowledge bases. Robotics shows a clearly 

decreasing trend in the knowledge application similarity with all the other enabling technologies. 

 

3.5.  The interrelation of knowledge bases 

After examining the technological and industrial similarity of the six enabling technologies, we 

now assess whether and to what extent these technologies are interrelated, that is to say how 

these technologies cross-fertilise each-other, by using cross-citations between patents. While we 

based our previous analysis on citations made and received from the universe of USPTO granted 

patents, in this section we examine “internal” citations within patent sets. Figure 9 reports for 

each enabling technology the share of citations made to patents related to a focal enabling 

technology. The first category is always the share of “self-citations”, i.e. citations between 

patents in the same enabling technology. Figure 10 reports similar graphs illustrating the shares 

of citations received by the enabling technologies. The comparison of the two figures provides 
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information on the evolution of the reciprocal positions of these technologies in an interrelated 

technology system. 

 

<< INSERT FIGURE 9 and 10 ABOUT HERE >> 

 

Big Data, IoT, Robotics, and 3D Printing appear as technologies with a more independent 

development, with shares of self-citations constantly well above the 70% mark for both 

backward and forward citations. AI and Cloud display more varied dynamics indicating a more 

integrated position in the technological system. More specifically, AI decreases the share of self-

citations made from a peak of about 80% in the late 90s to less than 30%in 2014. This fall in self 

citations is compensated by a steady increase in citations made to Big Data and IoT. While the 

total share of citations received by AI from AI, Big Data and IoT is similar to the total share of 

citations made, in the latter case, self-citations display a different pattern. They reach the 

minimum (less than 20%) in the early 2000s and doubled in 2014. This indicates that within AI 

there has clearly been a recent surge of internal technological development. Finally, Cloud is the 

technology that is less reliant on self-citations, displaying a large degree of integration with the 

IoT and AI domains. 

 

4. An integrated approach to the adoption of Industry 4.0 

Industry 4.0 is a combination of several technologies. The way in which the six enabling 

technologies might result in systemic disruptive change in the economy depends on how they 

will diffuse, more or less jointly, in adopting sectors, and on the way in which they will be 

adapted to different production and consumption needs as they diffuse. From the viewpoint of 

broad technological backgrounds, semiconductor and internet technologies, increasingly rich in 

AI content, are overall predominant components of Industry 4.0 systems. Given the information 

technology roots of these domains, it can be argued that so far we have been observing the 

continuation, or perhaps amplification, of the Third Industrial Revolution, rather than the clear-

cut birth of a Fourth. It is however possible that we will soon see unprecedented and radically 

new uses of (combinations of) enabling technologies. Moreover, the most dramatic changes 

might not come from manufacturing at all but rather from the service sectors. 
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<< INSERT TABLES 6 and 7 ABOUT HERE >> 

 

As far as manufacturing is concerned, it is difficult to find clear empirical evidence of a 

fundamental break between the adoption of ‘smart’ technologies and the adoption of ‘pre-smart’ 

technologies such as CAD/CAE/CAM. Overall the diffusion of Industry 4.0 appears to be patchy 

and heterogeneous across countries and sectors. After about four-five years from the introduction 

of all the major Industry 4.0 technologies, Table 6 presents estimates of the size of the markets 

for each enabling technology (note that artificial intelligence is here treated in its specific 

embodiment in advanced human-machine interfaces). The table shows that the largest market is 

by far Industrial IoT. Table 7 is an attempt to summarise what we know of the state of diffusion, 

with a synopsis of the major segments. It reports figures for: the worldwide installed base and/or 

percentage of adoption on the total target industry population; expected diffusion as per the latest 

growth rate estimates; diffusion by sector and geography; and key diffusion drivers. If we focus 

on the aggregate figures, there are around 2 billion IoT devices6, 850,000 industrial robots 

(including all robotic technologies), and 600.000 3D printers installed.7 In terms of growth rates 

(the growth of the installed base of systems and devices), there are clear indications of high 

growth in the IoT cluster and additive manufacturing, and slower growth in robots (a more 

mature segment) and advanced human-machine interfaces (a possible sign of the aforementioned 

difficulty to apply AI effectively to current production processes).8  

 

Germany is at the frontier of Industry 4.0 and emergent evidence on this context of adoption 

provides very useful insights. A recent study of 128 adoption cases across 500 production sites 

(IoT Analytics, 2016) uncovered a clear dichotomy between large companies, which are the most 

advanced buyers and lead users, and small and medium sized firms, which are lagging behind, 

suggesting cost and absorptive capacity barriers to adoption. Moreover, the majority of firms 

seem to have privileged ‘single technologies’ adoption paths while only few companies are 

                                                 
6 Note that this figure is somewhat ambiguous because it hides the relative weights of the different components of 
IoT systems. 
7 From IDC, Gartner, Morgan Stanley, and PWC latest market data. 
8 Regarding the geographical distribution of I4.0, it is interesting to notice in the figures for robotics that China is the 
largest adopter by absolute numbers, while South Korea, Japan and Germany are leading by intensity of adoption. 
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undertaking a systemic (multi-technology) approach. Italy provides interesting contrasting 

evidence: despite the role played by the manufacturing sector in the structure of its economy 

(including exports), it is a context where the process of diffusion of ‘pre-smart’ technologies 

(e.g. CAD/CAE/CAM) has not yet been completed and the adoption of ‘smart’ technologies 

started significantly later than in Germany. A survey of 23,000 companies carried out in 2017 for 

the Italian Ministry of Industry and Economic Development (MISE, 2017) illustrates the very 

slow uptake of Industry 4.0 technologies: only 8.4% of manufacturing companies (most of which 

large) have made investments in this space, and only 4.7% intend to do so in the next three years, 

against estimates that show positive returns to adoption. As in the German case, firms that adopt 

a multi-technology approach are a minority. The same data indicate as main drivers of adoption 

increased competitiveness through greater production efficiency (e.g. due to cost optimization, 

and greater flexibility), and product quality improvement through minimization of production 

errors. Instead, the application of new business models figures prominently in the preferences of 

smaller firms.  

 

5.  Drivers of industrial change: a discussion and research agenda 

There are several unexplored aspects of I4.0 enabling technologies, whose study presents some 

of problems typically posed by emergent technologies. These include fluid boundaries and 

definitions, as well as fundamental uncertainty in their substantial patterns of growth and 

development. Despite difficulties in finding and structuring relevant data, there are (at least) 

three sets of questions of particular importance to gain better understanding of these enabling 

technologies and monitor their possible transformation in the general purpose technologies of a 

Fourth Industrial Revolution. The first questions concern the domain of industrial dynamics, the 

second standards, and the third government policy. 

 

Industrial dynamics 

The six enabling technologies display uneven patterns of concentration and market dynamics. 

IoT is probably the most important segment where industry dynamics will eventually influence 

the evolution of the whole Industry 4.0. Other than in sensors9, the segment is highly unstable 

                                                 
9 The sensors segment of the industry is relatively mature and will likely be driven by low energy consumption, 
smaller size, and cost minimisation objectives. 
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and paths largely unpredictable. While sensors producers and telecom providers are capable of 

covering only their key area of specialization, and neither have strong competences in machine 

and processes nor ownership of the data produced, competition seems to be driven by machine 

producers, lead users and software companies. A particular challenge is the ongoing competition 

between proprietary vs. open source architectures. Additive manufacturing and robotics markets 

are relatively more mature. Additive manufacturing is strongly segmented in two different 

compartments (business and consumers) with different technologies and players. However, 

despite high barrier to entry in both segments, and also despite the fact that both segments 

depend on the quality of extruding technologies (this determines printing quality), the sector is 

still decisively unstable: after the expiration of key patents in 2014-2015, new industrial research 

has marked the entry of traditional printer players (such as HP), services players (such as 

Amazon) or software players (such as Autodesk), which could radically change the competitive 

landscape. Robotics has instead received new impulse by the aggressive entry of Chinese 

producers as well as the introduction of new materials, and advances in AI and its latest 

applications to human-machine interfaces. In turn, these are directly related to fast progress in 

big data and manufacturing analytics. Big data analytics features some of the major ICT players 

such as IBM (U.S.), General Electric (U.S.), Microsoft (U.S.), Oracle (U.S.), PTC Inc. (U.S.), 

SAP SE (Germany), Cisco (U.S.), Hewlett Packard (U.S), Hitachi (Japan), and SAS (U.S.). 

Interestingly, most large organizations in North America are choosing on-cloud deployment 

because of cheaper installation and ease of data retrieval (anytime, anywhere). Cloud computing 

is itself fragmented in Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and 

Software-as-a-Service (SaaS) markets, depending on the degree of outsourcing. Moving from the 

former to the latter, there is an increasing level of efficiency (in terms of cost reduction), but also 

less control over data and software (the customer would typically deploy its own software on the 

infrastructure and platform). The three tiers are also characterized by different barrier to entry: 

SaaS has the lowest and new entrants can take advantage of low required initial investment and 

quick time to market. For PaaS, in-house development and human capital constitute significant 

barriers, while IaaS requires substantial financial investment in order to build and support the 

Cloud infrastructure.  
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Overall, the patterns of entry and industry growth differ within and across sectors, and some of 

the key segments presents the typical turbulence of fluid phases of technology life cycles. The 

presence of large players (e.g. Google, IBM) in related segments and related enabling 

technologies could, however, limit entry by small innovative firms and provide scope for 

agglomeration and diversification strategies.  

 

Industry standards  

One of the most interesting areas for research, with implications for both industrial dynamics and 

the diffusion of I4.0 enabling technologies, is the problem of standards. Of paramount 

importance are legal standards for robotics and AI, and technical standards for the most highly 

networked technical systems, such as IoT and Cloud. The lack of standards is one of the most 

serious barriers to adoption. Beside the ethical issues of robotics and AI regulation, at the 

technology level the clearest tension is between the push for proprietary standards by early-stage 

global players, and the preference of adopters’ consortia for more open standards (such as the 

RAMI 4.0 architecture elaborated by “Platform Industrie 4.0” and the IIRA of the Industrial 

Internet Consortium).  

 

Standards allows interoperability in complex technical systems and this is precisely the problem 

faced by the IoT industry, where companies are joining different consortia and entering different 

alliances in order to generate the critical mass needed for the generation of voluntary de facto 

standards (among them, Auto-ID Lab and the Alliance for the Internet of Things Innovation 

(AIOTI), promoted by the European Commission). Other parts of the systems are under the 

control to standard setting bodies: RFID technologies, frequency and the format of data are under 

the remit of GS1, the European Telecommunications Standards Institute (ETSI) and ISO (Atzori 

et al. 2010).10 The definition of standards is also related to broader regulatory issues. Firstly, 

competition, given the need to address new markets and their boundaries. Secondly, privacy, 

given the sensitive nature of the type of data smart objects will be able to gather. Thirdly, cyber 

security: as noted by Whitmore (2015), current approaches to cyber-security, mostly based on 

encryption, may not be feasible for smart objects with limited computing capabilities. Cloud is 

                                                 
10 For the broader IoT architecture, ETSI is also play a role through its Machine-to-Machine Technical Committee.  
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another domain strongly affected by the availability of standards or lack thereof. Cloud 

interoperability is a major issue, but there is no agreement of how best to address the problem. 

For example, IBM subscribed to the Open Cloud Manifesto (2009), but Microsoft and Amazon 

did not. Parallel standardisation initiatives are proliferating, led both by businesses alliances and 

by the main international standard-setting organizations (e.g. ISO, IEEE and the ITU).11  

Moreover, the European Commission has specifically identified IoT and Cloud, together with 

cybersecurity and 5G communications) as essential technology building blocks of the Digital 

Single Market. In summary, (interrelated) standards races and de jure standardisation processes 

will play a fundamental role in shaping the competitive environment, but whether these 

processes will follow the same lines of development of previous ITC standard making 

experiences remains an open question. At the moment, the technical and legal complexities of 

the problem, appear to be very distinctive of this phase of industrial growth and will deserve 

careful study.   

 

Government policy 

Enabling technologies are fast becoming a central part of a new wave of industrial policies, many 

of which are specifically designed to foster the development and diffusion of Industry 4.0. The 

IPOL Study Group on Industry 4.0 (European Parliament, 2016) describes a series of 

interventions that can be classified as:  

− integrated adoption processes and a strong cooperation between industry, trade unions 

and companies;  

− more targeted approaches focussing on individual technologies;  

− ‘neutral’ direct approaches (firms use subsidies but select their technology of choice); 

− ‘neutral’ indirect approaches (more standard tax incentives).  

Very often different policies coexist within the same country more or less coherently, and more 

or less related to a ‘mission-oriented’ approach to science and technology policy, or industrial 

policy more broadly. It is not clear which type of policy and which policy mixes will prove 

effective in supporting the competitiveness of different economies, especially if we consider that 

                                                 
11 The European Commission is considering 5G communications, Cloud, IoT, (big) data technologies and 
cybersecurity as essential technology building blocks of the Digital Single Market. 
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the same interventions may produce very different effects on systems that are structurally 

different in their production and application of I4.0 enabling technologies. This is an essential 

area for further research, not least because this level of policy intervention is related to other 

policy domain (above all labour policy) directly called into question by the revolutionary nature 

of emergent general purpose technologies.  

 

6.  CONCLUSION 

Industry 4.0 is complex and heterogonous cluster of emergent technologies that contain the seeds 

of, but do not yet coincide with, the Fourth Industrial Revolution. In this paper we have 

identified and examined the six main components of the new digital economy, which has been 

growing out of the established semiconductor-cum-internet paradigm. As far as manufacturing is 

concerned, it is helpful to remember that is not the first time we have seen an attempt to 

implement systemic approach to automation. In the early nineties, CIM (Computer Integrated 

Manufacturing) was a top-down approach to translate a classic information system methodology 

into production facilities. It was not a success. It remains an empirical question whether and to 

what extent Industry 4.0 will be radically different, or – put differently – how long it will take for 

enabling technologies to become fully fledged general purpose technologies and revolutionise 

production and consumption systems.  

 

Many of the building blocks of Industry 4.0 have been around for many years: robotics and 

human-machine interfaces are based on the existing mechatronic industry; the use of sensors in 

machines has more than 20 years of history, and so do machines connected to computers; 3D 

printing is now more than 30 years old and even AI has been around for many years but has not 

had any obvious and fundamental impact on businesses. However, the introduction of 

complementary innovations are changing the potential application of known techniques: the 

introduction of low energy consumption in sensors, and their declining costs, are boosting their 

diffusion; advanced machine learning and deep learning are now beginning to drive automation; 

the introduction of cloud connectivity is delivering low cost processing power and pervasive 

interconnection; and finally, new ways to connect monitoring and management systems (the so 

‘digital twins’). No easy prediction can be made about the aggregate outcomes of joint diffusion 

of complementary and incremental innovations. Much work remains to be done on heuristics at 
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the base of the R&D processes in this space, their geographical and organisational distribution, 

the diffusion of technology, patters of concentration and industry dynamics (who will be the 

technology leaders of the future?), and their ultimate effects on growth, productivity and 

employment.  
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LIST OF TABLES 

Table 1 – Summary of the sampling strategy 
TECHNOLOGY SELECTION STRATEGY 

 IPC KEYWORDS SOURCES 

CLOUD NO 

Cloud comput%, cloud securit%, cloud technolog%, 
cloud serv%, cloud process%, cloud software, cloud 

networking, cloud infrastructure, cloud solution, 
cloud system%, cloud data%, cloud storage, cloud 
app%, public cloud, private cloud, hybrid clouds, 

virtuali%ation, data warehouse, distributed 
comput%, cloud based, grid comput%, parallel 

comput%, concurrent comput%, parallel software, 
parallel process, cluster comput%, data portability, 

service orient%, service-orient%, web service%, 
utility orient*, utility comput%, cloud architectur%, 
MapReduce, Hadoop, VMware, hypervisor%, Hyper-
V, % as-a-service, Aneka, InterCloud, multitenan%, 

multi-core 

Huang (2015), Dotsika (2017), IPO big 
data report (2014), Buyya et al. (2013) 

IOT 

G05B19/418 G06F15/16 
G08C17/02 H04B7/26 
H04L12/28 H04L29/06 
H04L29/08 H04W4/00 

H04W72/04 H04W84/18 

NO 

Ardito, D'Adda, Messeni Petruzzelli 
(2018) "Mapping innovation dynamics 

in the Internet of Things domain: 
Evidence from patent analysis", 

Technological Forecasting & Social 
Change, 136, 317-333 on the basis of 

UK IP Office, 2014. The Internet of 
Things: A patent overview, UK 

Intellectual Property 
(IP) Office  

ROBOTICS 

B25J 9/16 B25J 9/18 B25J 
9/20 B25J 9/22 B60W 30/00 

B60W 30/02 B60W 30/04 
B60W30/045 B60W 30/06 
B60W 30/08 B60W30/085 
B60W30/09 B60W30/095 
B60W 30/10 B60W 30/12 
B60W 30/14 B60W30/16 
B60W30/165 B60W30/17 
B60W 30/18 B60W30/182 
B60W30/184 B60W30/186 
B60W 30/188 B60W30/19 

B60W 30/192 B60W 30/194 
B60W30/20 G05D1/02 

G05D1/03 

self –driving, driverless, autonomous, automated, 
unmanned) in proximity to (car, motorcar, 

vehicle, automobile, aircraft, airplane, aeroplane, 
submarine, marine) 

UK IP Office, 2014.Eight great 
technologies: robotics and 

autonomous systems, UK Intellectual 
Property (IP) Office Available at. 

https:// 

3D PRINTING 

B23K9/04 B23K26/34 
B23K26/342 C08L101/00 
C08L101/02 C08L101/04 
C08L101/06 C08L101/08 
C08L101/10 C08L101/12 
C08L101/14 C08L101/16 
B22F%  

NO 

UK IP Office, 2013.3D printing: a 
patent overview, UK Intellectual 
Property (IP) Office Available at. 

https://www.gov.uk/government/pu
blications/3d-printing-a-patent-

overview 

BIG DATA 

G06F 17/30 G06F19/10 
G06F19/12 G06F19/14 
G06F19/16 G06F19/18 
G06F19/20 G06F19/22 
G06F19/24 G06F19/26 
G06F19/28 G06Q 30/02 

G06F 17/50 G06N* 

NO 
UK IP, 2014. Big Data & Energy 

Efficient Computing, UK Intellectual 
Property (IP)  

AI NO 

machine learning, supervised learning, SVM, support 
vector machine, neural network, Artificial Intelligence, 

Data Mining, Machine Learning, Expert Systems, 
Machine Intelligence, Intelligent Machines, Artificial 

Thinking 

Webb, N. Short, N. Bloom and J. 
Lerner (2018) "Some Facts of High-

Tech Patenting", NBER Working Paper 
24793 

 
 
 
 
 



34 
 

 
 

Table 2 - Number of patents and growth rate by technology 
 1990-1995 1996-2000 2001-2005 2006-2010 2011-2014 

 NUM 
PATENTS 

AV. 
GROWTH 

RATE 

NUM 
PATENTS 

AV. 
GROWTH 

RATE 

NUM 
PATENTS 

AV. 
GROWTH 

RATE 

NUM 
PATENTS 

AV. 
GROWT
H RATE 

NUM 
PATENTS 

AV. 
GROWT
H RATE 

AI 1118 13% 1133 4% 1139 -2% 1197 0% 1343 15% 
BIG DATA 9421 18% 19268 15% 28050 6% 36714 4% 37151 4% 

CLOUD 205 33% 398 10% 667 18% 1825 19% 2643 11% 
IOT 4861 34% 19618 31% 42400 9% 54823 6% 66617 9% 

3D PRINTING 3425 10% 3819 4% 4012 -8% 2002 -4% 2222 5% 
ROBOTICS 1976 13% 2661 6% 3222 2% 3578 6% 6295 25% 

TOTAL 21006 19% 46897 18% 79490 6% 100139 5% 116271 8% 
 
 
 
 
 
 
 
 

Table 3 - Top Innovators over time and technology 
 Top Innovators (1990-1995) Top Innovators (2010-2014) 
 country company share country company share 

AI 

US IBM 0.052 US IBM 0.083 
JP HITACHI 0.034 US MICROSOFT 0.067 
JP TOSHIBA 0.026 US GOOGLE 0.059 
JP PANASONIC-MATSUSHITA 0.026 US QUALCOMM 0.028 

BIG DATA 

US IBM 0.073 US IBM 0.121 
JP HITACHI 0.027 US GOOGLE 0.069 
JP FUJITSU 0.014 US MICROSOFT 0.044 
JP TOSHIBA 0.013  SAP 0.020 
US MOTOROLA 0.013    

CLOUD 

US IBM 0.149 US IBM 0.227 
US DEC 0.077 US RED HAT 0.041 
JP HITACHI 0.072 US MICROSOFT 0.040 
JP FUJITSU 0.053 US INTEL 0.032 
US THINKING MACHINES 0.053    

IOT 

US IBM 0.098 US IBM 0.048 
US MOTOROLA 0.067 KR LG 0.035 
JP NEC 0.052 US QUALCOMM 0.033 
SE ERICSSON 0.035 US GOOGLE 0.028 

3D PRINTING 

SW CIBA 0.025 US BAKER HUGHES 0.025 
JP SUMITOMO 0.024 US GE 0.023 
US GE 0.016 JP HITACHI 0.021 

US MINNESOTA MINING & 
MANUFACTURING 0.015 DE SIEMENS 0.020 

ROBOTICS 

JP FANUC 0.032 JP TOYOTA 0.059 
US EATON 0.029 US FORD 0.051 
JP HONDA 0.027 US GOOGLE 0.037 
JP HITACHI 0.020 US DIEBOLD 0.029 
US CATERPILLARD 0.020    

 
 

 



35 
 

Table 4 - Top used industrial knowledge base domain 
 USED INDUSTRIAL KNOWLEDGE DOMAIN Share C4 HHI 

AI 

Manufacture of computers and peripheral equipment 38.7% 

0.678 0.188 

Manufacture of Communication Equipment 11.3% 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 11.1% 

Manufacture of Instruments and Appliances for Measuring, Testing and Navigation; 
Watches and Clocks 6.7% 

BIG DATA 

Manufacture of computers and peripheral equipment 49.2% 

0.782 0.278 
Manufacture of Communication Equipment 15.7% 

Manufacture of Office Machinery and Equipment (Except Computers and 
Peripheral Equipment) 7.1% 

Computer Programming, Consultancy and Related Activities 6.2% 

CLOUD 

Manufacture of computers and peripheral equipment 56.3% 

0.858 0.361 
Manufacture of Communication Equipment 19.5% 

Manufacture of Office Machinery and Equipment (Except Computers and 
Peripheral Equipment) 5.3% 

Computer Programming, Consultancy and Related Activities 4.7% 

IOT 

Manufacture of Communication Equipment 55.0% 

0.908 0.384 
Manufacture of computers and peripheral equipment 27.7% 

Computer Programming, Consultancy and Related Activities 4.3% 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 3.8% 

3D PRINTING 

Manufacture of Basic Chemicals, Fertilisers and Nitrogen Compounds, Plastics and 
Synthetic Rubber in Primary Forms 26.4% 

0.500 0.102 Manufacture of Basic Metals 8.6% 
Manufacture of Other Special-Purpose Machinery 8.0% 

Forging, Pressing, Stamping and Roll-Forming of Metal; Powder Metallurgy 7.0% 

ROBOTICS 

Manufacture of Motor Vehicles 12.7% 

0.406 0.064 
Manufacture of Instruments and Appliances for Measuring, Testing and Navigation; 

Watches and Clocks 11.8% 

Manufacture of General-Purpose Machinery 9.8% 
Manufacture of computers and peripheral equipment 6.3% 

 

 
Table 5 – Top sourced industrial knowledge base domain 

 USED INDUSTRIAL KNOWLEDGE DOMAIN Share C4 HHI 

AI 

Manufacture of computers and peripheral equipment 39.6% 

0.718 0.200 
Manufacture of Communication Equipment 11.9% 

Manufacture of Office Machinery and Equipment (Except Computers and 
Peripheral Equipment) 11.5% 

Computer Programming, Consultancy and Related Activities 8.8% 

BIG DATA 

Manufacture of computers and peripheral equipment 54.0% 

0.842 0.330 
Manufacture of Communication Equipment 16.9% 

Computer Programming, Consultancy and Related Activities 6.9% 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 6.5% 

CLOUD 

Manufacture of computers and peripheral equipment 62.2% 

0.928 0.438 
Manufacture of Communication Equipment 21.1% 

Computer Programming, Consultancy and Related Activities 7.1% 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 2.4% 

IOT 

Manufacture of Communication Equipment 54.6% 

0.935 0.403 
Manufacture of computers and peripheral equipment 32.0% 

Computer Programming, Consultancy and Related Activities 4.5% 
Manufacture of Office Machinery and Equipment (Except Computers and 

Peripheral Equipment) 2.5% 

3D PRINTING 

Manufacture of Basic Chemicals, Fertilisers and Nitrogen Compounds, Plastics and 
Synthetic Rubber in Primary Forms 21.9% 

0.438 0.080 Manufacture of Other Special-Purpose Machinery 7.7% 
Manufacture of medical and dental instruments and supplies 7.6% 

Manufacture of Electronic Components and Boards 6.6% 

ROBOTICS 
 
 

Manufacture of computers and peripheral equipment 12.2% 

0.383 0.064 
Manufacture of Instruments and Appliances for Measuring, Testing and Navigation; 

Watches and Clocks 9.3% 

Manufacture of Motor Vehicles 8.8% 
Manufacture of Communication Equipment 7.9% 
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Table 6 - Industry 4.0 Worldwide turn over 

  Industral IoT Cloud 
Manufacturing 

Manufacturing 
Analytics 

Advanced 
Robotics 

Advanced 
Human-

Machine Int. 

Additive 
Manufacturing 

ICT 
Industry 

Turn Over 
(2015-2016) 

200 B $ (on a 
total of 1,000 

B$, savvy 
estimate) 

8 B$, (on a total 
of 23 B $ 

including ERP 
and CRM Cloud) 

3,2 B$ on a 
total of 17B$) 

11B$ (on a 
total of 
27B$) 

1 B $ (on a 
total of 2,6 

B$) 
6 B $ 3.5 T $ 

Expected 5 Yrs 
CAGR 25-30 % 25% 21% 5-8 % 8-9% 20% 2% 

Sources 

IDC, IC 
Market 

Drivers, IooT 
Analytics, 
Gartner 

Gartner, IDC, 
Cisco 

Markets and 
Market, IDC 

BI 
Intelligenc
e, World 
Robotics 

Market and 
Markets, 

Grand View 
Research 

Market and 
Markets, IDC 

Gartner, 
IDC 
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Table 7 – Industry 4.0 diffusion 

  IIoT Cloud Manufacturing Manufacturing Analytics Advanced Robotics Advanced Human 
Machine Interface 

Additive 
Manufacturing 

Installed base 
or % adoption 

IIoT=2B devices on a 
total of 12B Installed 

devices (all IoT) 

Global Cloud penetration 
is: 10% of companies are 

adopting private cloud 
and 20 % public cloud, 

driven by large companies 
(more than 30% overall 

adoption) 

Statistic on different 
manufacturing analytics’ 

global adoption:  
Inventory Management 

20%, Plant Quality 
Management 7%, Plant 

Simulation 5%, Plant 
Analytics 10%, Predictive 

maintenance 7% 

850 K installed devices  12 M devices 
(Industry only) 600 K Installed Base 

Expected 
growth rate 30% 30% 30% 5% 10% 29% 

Diffusion by 
Sector 

IIoT about 25% of 
total installed base 

(Oil and Gas Leading) 
Overall: Connected 
Cities = more than 

50% of total installed 
base 

Manufacturing 
15%,Aerospace 13%, 
Parma Consumer and 
Automobile each 13% 

penetration 

NA 
Automotive 50%, 

Electrical/Electronics 15%  
Metal/Machinery 10% 

Automotive, Oil & 
Gas, Packaging, 
Aerospace and 

Defense, Food and 
Beverage, 

Installed base 
distribution: Consumer 

Products 20% 
Automobile 20% 

Medical 15% 
Aerospace 15%  

Geography APAC=US =Europe LATAM 40 %, APAC 30%, 
US 20 % Europe 15% NA 

Sales in 2015: China 
leading country 70 k, 

Korea, 35 k, Japan 35, US 
27k, Germany 20 k 

NA 40% APAC 30% 
Europe 20%, China 

and India fast 
growing countries 

40% NA, 28% Europe, 
27% APAC  

Drivers 

IIoT: Revenue Growth 
more than cost 

cutting Predictive 
maintenance Product 

Control  

Search for more flexibility 
and scalability, Big Data, 

move to Opex, less 
important cost reduction 

Search for New revenue 
streams and reduce cost. 

Pressure to increase 
customer satisfaction and 

product quality 

Cost drivers, Unit price 
decrease, Product Quality 

improvements (Word 
Robotics 2016) 

New industrial 
automation plants, 

operational 
efficiency 

Prototyping, product 
Development, 

Increased efficiency, 
cost reduction 

Sources 

IDC, IC Market 
Drivers, IIoT 

Analytics, Gartner, 
Cisco 

IDC, Morgan Stanley, 451 
Group, TATA consulting 

Serv. 
IDC for HP, Oracle BI Intelligence, World 

Robotics 

Markets and 
Market, Global 

Industry Analyst Inc. 

IDC, Morgan Stanley, 
Wholers, Fathom 

Research 
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Figure 1 - A Graphical Representation of Industry 4.0 (Source: Authors) 
 

 
 

 

Figure 2 - Time evolution and growth rate 

 

Source: Authors calculations 
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Figure 3 – Evolution of the concentration of innovative activities across technology 

 

Source: Authors calculations 

 

Figure 4 - Evolution of the stability of innovative activity across technology 

 

Source: Authors calculations 

 

Figure 5 - Patterns of entry over time and across technology 

 

Source: Authors calculations 
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Figure 6 - Evolution of patent characteristics 

 

(a)                                                                                         (b) 

 
                                           (c)  

                Source: Authors calculations 
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Figure 7 - Similarity of used industrial knowledge base by technology 
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Figure 8 - Similarity of industrial application by technology 
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Figure 9 - Distribution of cited patents between enabling technologies 
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