CULTURAL PARTECIPATION, PAST CONSUMPTION AND WEATHER CONDITION Marco Gambaro, University of Milano Tong Wang, Waseda University

July 2019

ABSTRACT

Cultural participation is the result of interactions between supply and demand. The maximum possible consumption is the number of performance offered multiplied by venues capacity. In the short run supply can adapt modifying the number of performance while in the long run can adapt also the capacity building or dismissing theatres.

We analyze cultural participation using a rich dataset which span monthly in the years 2006-2016 for 110 Italian provinces.

Cultural participation can be influenced by economic and social condition such as income, literacy or unemployment, and we test the possibility that weather conditions can play a role. Our empirical specification includes the possibility for rational addiction already tested in recent literature.

We focus on three main kind of performances: movies, theatres and concert and estimate both price elasticities and cross elasticities.

We find that weather condition play a small but significant role in determining demand for cultural goods but more for movies than in theatre and concert where prior reservation is typical.

Keyword: Cultural participation, live performances, theatre, demand, movie exhibition, cross elasticities, weather conditions

Jel codes: L82, D12, Z11

Contacting author: marco.gambaro@unimi.it

VERY PRELIMINARY DRAFT – PLEASE DO NOT QUOTE WITHOUT AUTHOR PERMISSION

1 INTRODUCTION

While income and price elasticities are the usual end products of empirical demand analysis only few paper devoted to the demand for performing arts derives such elasticities and a broad part of literature is devoted instead to more broadly examining the competing determinants of audience attendance or participation patterns (Seaman 2006).

Gapinski (1986) explore the substitution between different form of live performance, or within a specific art expression using firm data of 13 London companies along twelve years and finds the cross elasticities to be all positive showing that different individual demands are rather interdependent. He finds own price elasticity all below unity and argues that theatres can rise revenues through a price increase also if there would be a spillover on other companies because of observed substitutability.

Muniz, Rodriguez, Suarez (2017) in a participation analysis hat use survey data confirm the importance of income and education in determining participation in cultural activity and its frequency using Spanish Time Use Survey with a sample of individual between 18 and 65 years old. Running separate estimates by gender they find that female frequency of attendance increases with wage and decrease when they are working. Moreover female cultural participation is more sensitive to earning and non labour income than male participation. While their methodology does not allow to estimate proper elasticities, they suggest that cultural promotion policies should be focused on the most disadvantaged population in term of education and earnings.

Cultural activities can be considered a preferential platform to produce relational goods that influence positively individual well-being as emerge from a study based on a survey of Italian population (Blessi G., E.Grossi, P.L.Sacco, G.Pieretti, G.Ferilli, 2014). Cultural experiences may then be much more than a pleasant way to spend leisure time. They may be important platforms for the development of individual dispositions and capabilities that may substantially expand the potential of self-determination, the strategies for the pursuit of life satisfaction, the articulation and adoption of lifestyle choices. While relational goods cannot be directly produced by the state, public action can promote personal interaction in many ways, for istance supporting arts and sport that are not only linked with entertainment but to the more central issue of social development.

While many studies find figures of income elasticities inferior to the unity for many cultural product, expecially the ones that use aggregate data (Seaman 2006?), a recent paper using microdata from income and expenditure in seven Latin American countries, estimate Engel equation and efind that culture behave as a luxury good, with income elasticity around 2 (Acerenza Gandelman 2019).

Cultural spending is larger in urban area, in household where the head is a female but lower as the number of children increases. Most educated people spend more in cultural both in absolute level but also as a percentage of total household consumption also after controlling for the total household total expenditure. For the authors this means that educated people appreciate more cultural spending.

Buzanakova and Ozhegnov (2016) use the data of different seat area of a single theatre to estimate a centile regression and find that demand is weekly elastic to price and the price elasticity change for different performance with the more popular performances exhibit the less elastic demand .

Hallmann et al. (2017) show a small but significant correlation between sport and cultural participation that can be described as complementary and competing activities. Leisure times, gender, education and subjective well-being are significant predictor of both sport and cultural participation.

In a paper close to our Castiglione and Infante (2016) show than theatre consumption is consistent with the theory of rational addiction with past consumption influencing current consumption. The utility is influenced by learning by doing. The study is based on a panel of 20 italian regions over the period 1980-2013.

There are not many analysis on the impact of meteorological conditions on cultural consumptions. As many of the recent work on the impact of weather conditions, the few analysis concerning cultural good rely mainly on single institution data but with daily observation that can better isolate the role of such factors as rain.

Cellini and Cuccia(2019) using daily data of Museo della Ceramica in Sicily, document a significant effect of weather conditions, specifically temperature and rainfall, which work in an asymmetric way across the different seasons. Temperature has a significant non-monotonic effect on museum attendance, with an increase having a positive impact in low-temperature (non-summer) months and a negative impact in high-temperature (summer) season; rainfalls encourage museum visits but only during summer months. They consider only paid entrances leaving away school visits and older people free entry.

In another study focused on a single museum in New Zeland, Cuffe(2018) use subdaily data and find that the magnitudes and signs of the effects of rainfall vary significantly throughout the day. In some hours, the predicted increase in visitors is nearly three times larger than would be expected from estimates using daily measures. Many individuals appear to actively adjust their plans

3

throughout the day in response to rain, while others' attendance depends upon prior weather forecasts of rain.

In a more general work Connolly (2008) considers the effects of weather conditions on daily laborleisure decisions of individuals. Using diary data from the American Time Use Survey (ATUS),

Connolly finds that men respond to daily precipitation by working more and engaging in less total leisure. At the same time, women report greater time spent in leisure on days with rain, as well as more minutes in indoor activities.

A little broader literature explores the weather impact os sport practice (Provencher,2002; ...) or on outdoor activities like visiting zoo (Zivin and Neidell, 2009).

Weather condition can have different effect on cultural consumption. Rain can crowd out other outdoor activities therefore increasing demand for indoor performances, but at the same time can make an evening out of home more disagreeable and then decrease demand. The intensity, predictability or the part of the day can have an important role that cannot be captured with monthly data. Temperature act differently depending on the average condition of the area and the possible extreme values. A temperature of 4 degree in winter can reduce demand for out of home activity in the south of Italy but increase it in many northen provinces.

To capture these different possible effect we use a non linear relation with deman (quadratic term) and an interaction with a month dummy to show possible different effect in different seasons.

2 DATA DESCRIPTION

Our data come from different sources. From Siae (Società Italiana Autori Editori, the public italian collecting society) we obtained montly data on admittance for different cultural consumption, for the 110 italian provinces from January 2006 to December 2016 with a total in theory of 13200 observation. But the panel is not balanced since in different provinces not always there is supply and demand for each specific cultural good.

For each sector we obtained total revenues that divided by monthly admittance produce an average price, than the number of performances that is the first proxy for supply.

From the yearly data on the number of venues for different cultural goods and the number of total seats available we built the average number of seat per sector (an yearly date) that multiplied by the monthly number of performance give us the effective total supply. Probably there are some overlapping between the number of venues since not every venue has on an exclusive sector.

Especially in minor town a single venue can work as a theatre, hosts ballet performances and work as a cinema in some days of the week.

There are some inconsistencies in these data, that are probably due to error in data collection, and the problems emerge when there are ratio like price (revenue/attendance) or occupancy rate (tickets/total seats avalilable).

From Istat (Italian Institute for Statistic) we took the province data on economic and social conditions, namely population, unemployment, participation to the labour market, value adde per province, disposable income and age group. Many variable are not available on a monthly basis but at quarterly or yearly observations. The level of instruction is proxied by the average number of years of school attendance.

From Aeronautica Militare we obtained the data average temperature and total rain on a monthly basis from January 2007 to December 2016 for the single meteo stations. Areonautica Militare list almost 200 station but due to budget reduction some of them, not relevant for the airports, were not maintained and others were transferred to regional administration to be integrated in regional meteo systems. In total we have data form 96 stations for rain and from 105 stations for temperature. Some of these station are installed on top of the mountains and are unrepresentive of their province for average data and we need to exclude them. In the end we could match meteo data for 56 provinces representing 73% of Italian population that are the sample we use in first draft.

Summary Statistics					
VarName	Obs	Mean	SD	Min	Max
ticketsballet	4448	2466.103	4150.830	1.000	63060.000
priceballet	4448	15.386	145.581	0.100	6836.140
supplyballet	4448	5138.371	7777.148	8.000	98805.547
ticketsconcert	5443	3059.927	6138.147	1.000	76922.000
priceconcert	5443	17.329	102.072	0.009	4892.222
supplyconcert	5443	5593.633	8668.291	40.000	79313.758
ticketsmovie	6450	95829.711	1.47e+05	104.000	2.30e+06
pricemovie	6450	5.915	0.701	1.266	11.242
supplymovie	6450	5.95e+05	7.26e+05	5017.500	1.00e+07
ticketsopera	3381	3983.936	13958.493	1.000	2.29e+05
priceopera	3381	365.078	13186.237	0.121	7.54e+05
supplyopera	3381	4461.989	6603.648	39.000	95886.664
ticketspop_concert	5520	7432.727	17303.982	1.000	3.35e+05
pricepop_concert	5520	18.069	24.339	0.116	1029.033
supplypop_concert	5520	22611.428	70385.922	180.000	1.54e+06
ticketstheatre	6279	14059.324	28055.881	1.000	4.00e+05
pricetheatre	6279	37.607	1145.548	0.196	90232.500
supplytheatre	6279	34144.480	80588.272	123.286	1.26e+06
occupancytheatre	6279	0.468	0.334	0.001	4.041

6452	15.353	6.840	-0.890	30.220
6332	69.507	174.427	0.000	11374.800
6428	9.648	0.584	8.138	11.393
6452	2.37e+05	2.31e+05	41125.000	1.41e+06
6452	3.14e+05	2.82e+05	70606.000	2.00e+06
	6332 6428 6452	633269.50764289.64864522.37e+05	633269.507174.42764289.6480.58464522.37e+052.31e+05	633269.507174.4270.00064289.6480.5848.13864522.37e+052.31e+0541125.000

3 MODEL

We set up the model as follow:

$$Q_{it} = \beta_0 + \beta_1 P_{it} + \beta_2 X_{it} + \eta_i + \phi_t + \nu_{it}$$
(1)

The dependent variable Qit is the quantity of tickets sold, and the independent variable Pit is the price per-ticket. Xit is a vector of control variables including demographic conditions, macroeconomic variables and meteoric variables. η is the province fixed effect and ϕ t is a vector of season dummy variables, and vit is the sector-province and time variant unobservables. To take into account the fact that the provinces with higher population are more likely to have more tickets sold, we control for population in each province. Meanwhile, we also put people into three groups based on age: low age group (below 35 years old), middle age group (36 to 70 years old) and high age group (71 above) and control the percent of each group in each province. We run the regression for different sectors separately. Each observation is a sector in a province in a month of a year. The result is displayed in Table 1 and 2. Column 1 to 6 are ballet, concert, theatre, pop concert, movie and opera, respectively. The control variables include the average value added for the province, annual average population, disposable income, average education level, average labor participation rate, unemployment rate, population in different age groups. For the meteoric variables, we have rain and temperature, and we also interact these variables with season dummy variables. We find that for every sector, ticket price has a negative and significant effect on the quantity of tickets sold, which is consistent to the law of demand. We find that people's age range does not have significant effect on tickets sold, but the

percent of lower age people has negative effect on the tickets sold and middle age people has positive effect. This fact is not counter-intuitive.

	(1)	(2)	(3)	(4)	(5)	(6)
logprice	-0.377	-0.378***	-0.204***	-0.614***	-0.762***	-0.594***
logprice	(-1.86)	(-3.45)	(-12.07)	(-6.91)	(-5.90)	(-17.62)
VA	0.000114	0.000191*	0.0000583*	0.0000722	0.0000764*	0.000125
111	(1.00)	(2.03)	(2.14)	(1.26)	(2.32)	(1.72)
annua	0.0000141*	-0.00000565	-0.00000439**	0.00000881*	-0.00000561	0.0000068
amua	(1.98)	(-1.11)	(-2.67)	(2.43)	(-1.43)	(0.71)
disposable-income	-0.000320	0.0000631	-0.0000353	-0.000223	-0.000149*	-0.000228
dispositive meetine	(-1.36)	(0.37)	(-0.65)	(-1.94)	(-2.33)	(-1.63)
education	-0.276	-0.354	0.137*	-0.187	0.0645	-0.131
	(-0.67)	(-1.22)	(2.04)	(-1.08)	(0.97)	(-0.57)
abor-participation	-0.0121	-0.0239	0.00144	0.00279	0.00570	-0.00295
	(-0.24)	(-0.68)	(0.16)	(0.12)	(0.62)	(-0.09)
unemployment	0.0298	0.0411	-0.00826	-0.00961	-0.0150*	-0.0398
	(0.61)	(1.41)	(-1.11)	(-0.47)	(-2.10)	(-1.29)
logpopulation	-18.62*	-0.963	0.961	-7.429		
	(-2.13)	(-0.15)	(0.63)	(-1.86)		
perc-lowage	-1.401	-10.23	-0.0420	7.203	0.334	8.994
	(-0.07)	(-0.79)	(-0.01)	(0.85)	(0.10)	(0.79)
perc-midage	18.26	-6.479	5.216	16.97	6.865	33.42*
	(0.68)	(-0.40)	(1.10)	(1.50)	(1.56)	(2.07)
temperature	-0.148*	-0.0707	0.00247	0.0291	0.115***	0.0561
	(-2.15)	(-1.84)	(0.21)	(0.89)	(9.11)	(1.23)
rain	-0.000802	0.000482	-0.0000525	-0.000772	0.000240	0.00145
	(-0.72)	(0.51)	(-0.30)	(-1.12)	(1.00)	(1.82)

Table 1: Panel data regression with province fixed effect for different sectors

Significant at 10%; ** Significant at 5%; *** Significant at 1%

We find that for ballet, concert, pop concert and opera, the effect of education on the quantity of tickets sold is negative.

Also, labour force participation also has negative effect on the tickets sold for sectors of ballet, concert, and opera. These facts may indicate that higher education people have less cultural consumption because they are too busy with their jobs.

But one counter-intuitive result is that unemployment has a positive effect on the number of tickets sold, but disposable income has a negative effect. One explanation could be the following: people with higher income and employed have less time. Even for one who is unemployed, since the tickets are not expensive (especially considering the high welfare of Italy) and people have more time for cultural consumption, it is more likely that unemployed people are more likely to have cultural consumption.

Or, there is some possibility that in Italy, the art education is very fundamental so that even low education people like arts, so the key factor that determines consumption is not money (since the tickets are not expensive), not education, but time.

	(1)	(2)	(3)	(4)	(5)	(6)
spring	2.576**	1.303*	0.574***	0.316	-0.806***	0.253
opring	(3.01)	(2.23)	(4.40)	(0.97)	(-6.27)	(0.49)
summer	3.242	0.524	-3.431***	-0.941	-4.652***	-2.972
Summer	(1.02)	(0.63)	(-10.29)	(-0.82)	(-20.26)	(-1.66)
fall	1.535	1.147*	0.916***	0.443	-1.063***	0.477
Idli		(2.29)		(1.27)		(0.82)
tom * mine	(1.80) -0.230**	-0.0628	(6.24) -0.0317**	-0.0376	(-7.33) 0.0464***	-0.0276
temp*spring						
	(-2.89)	(-1.28)	(-2.62)	(-1.23)	(3.72)	(-0.57)
temp*summer	-0.265	-0.0240	0.138***	0.0493	0.215***	0.112
	(-1.53)	(-0.43)	(6.80)	(0.78)	(13.59)	(1.06)
temp*fall	-0.174*	-0.0588	-0.0824***	-0.0335	0.0811***	-0.0424
	(-2.08)	(-1.27)	(-6.20)	(-1.02)	(6.10)	(-0.78)
rain*spring	0.000180	-0.000264	-0.000498*	0.00145	-0.0000676	-0.00280**
	(0.17)	(-0.24)	(-1.97)	(1.87)	(-0.30)	(-3.03)
rain*summer	0.00429	-0.000575	-0.00112*	-0.000476	0.000842	-0.000100
	(1.27)	(-0.55)	(-2.54)	(-0.32)	(1.70)	(-0.09)
rain*fall	0.000840	-0.000664	0.000694*	0.000102	-0.000192	-0.00191
	(0.54)	(-0.77)	(2.29)	(0.12)	(-0.68)	(-1.70)
rainsq	0.000000136	-2.78e-08		-0.000000478		0.000000724
	(0.53)	(-0.05)	(1.74)	(-1.33)		(1.34)
tempsq	0.0105*	0.00311	-0.00265***	0.000635	-0.00670***	-0.00100
	(2.47)	(1.78)	(-4.43)	(0.39)	(-14.73)	(-0.37)
total-population	()	()	()	()	0.00000421	-0.00000412
Fabrana and					(1.06)	(-0.43)
Cons	245.1*	33.10	-3.986	95.59	9.360*	-10.14
ar arkite	(2.12)	(0.39)	(-0.21)	(1.87)	(2.46)	(-0.77)
				Significant at 1%		(-0.11)

Table 2: Panel data regression with province fixed effect for different sectors

* Significant at 10%; ** Significant at 5%; *** Significant at 1%

We show in appendix panel estimation with lagged variable using Arellano Bond procedure that confirm the finding of Cuccia and Castiglione with more granular data.

4 CONCLUSION

To be written

REFERENCES

Acerenza S., N.Gandelman, 2019, Culture is a luxury in Latin America, Estudios de Economia vol 46 N.1 pp 125-148

Blessi G., E.Grossi, P.L.Sacco, G.Pieretti, G.Ferilli, 2014, Cultural Participatio, Relational Goods and Individual Subjective Well-Being: Some Empirical Wvidences, Review of Economics and Finance 33(3) pp33-46

Borgonovi, F. (2004). Performing arts attendance: An economic approach. Applied Economics, 36(17), 1871–1885.

Borowiecki K., C.Castiglione, 2014, Cultural Paticipation and Tourism Flows: an Empirical Investigation of Italian Provinces,

Buzanakova A., E.Ozhegov, 2016, Demand for performing arts: the effect of unobserved quality on price elasticity, BRU Working Paper 156/EC/2016

Castiglione C., D.Infante, 2016, Rational addiction and cultural goods: the case of the Italian theatregoer, Journal of Cultural Economics, N.40 pp163-190

Dewenter, R., & Westermann, M. (2005). Cinema demand in Germany. Journal of Cultural Economics,

29(3), 213–231.

Finger R., N.Lehmann, 2012, Modelling the sensitivity of outdoor recreation activities to climate change, Climate Research 51(3) pp.229-236

Gapinski J., 1976, Lively Arts as Substitutes for the Lively Arts, The American Economic Review vol 76, N.2, pp 20-25

Hallmann K., C.Artime, C.Breuer, S.Dallmeyer, M.Metz, 2017, Leisure participation: modelling the decision to engage in sports and culture, Journal of Cultural Economics, vol 41, pp 467-487

Masters, T., Russell, R., & Brooks, R. (2011). The demand for creative arts in regional Victoria,

Australia. Applied Economics, 43(5), 619–629.

Muniz C., P.Rodriguez, M.J.Suarez, 2017, Participation in cultural activities: specification issues, Journal of Cultural Economics, N.41 pp.71-93

Prieto-Rodriguez, J., & Fernandez-Blanco, V. (2000). Are popular and classical music listeners the same people? Journal of Cultural Economics, 24(2), 147–164.

Seaman B., 2006, Empirical studies of demand for the performing arts, in: V.Ginsburgh and D.Throsby (eds) Handbook of the Economics of Arts and Culture, Elsevier B.V.

Zivin J., M.Neidell, 2014, Temperature and the allocation of time: Implication for climate change, Journal of Labour Economics, 32(1) pp.1-26

Zivin J., S.Hsiang, M.Neidell, 2018, Temperature and Human Capitaò in the Short and in the Long Run, Journal of the Association of Environmental and Resource Economist vol 5 N. 1 pp 77-105

APPENDIX

CONCERT

Arellano-Bond dynamic panel-data estimation Group variable: sec_pro Time variable: date					of obs = of groups =	456 45
TIME VALIADIE.	uace			Obs per	group:	
				obs per	min =	1
					avg =	10.13333
					max =	71
Number of inst	ruments =	456		Wald ch	i2(26) =	1420.43
Humber of Libe	- unerres			Prob >		0.0000
One-step resul	ts					
one step resul		(Std.	Err, adju	isted for	clustering o	on sec pro)
		(
1		Robust				
logtickets	Coef.	Std. Err.	7	P> z	[95% Conf.	Interval]
+						
logtickets						
L1.	3097112	.063247	-4.90	0.000	4336731	- 1857494
		.005247	4.50	0.000	.4550751	.105/454
logprice						
	.0438388	.0542327	0.81	0.419	0624554	.150133
L1.	.0541051	.0901993	0.60	0.549	1226822	.2308925
L2.	1367622	.0984663	-1.39	0.165	3297526	.0562281
L2.	130/022	.0904000	-1.55	0.105	5297520	.0302201
VA	.0007022	.0003823	1.84	0.066	0000471	.0014516
annua	.0001485	.0000667	2.23	0.026	.0000177	.0002793
dispos	0003718	.0007171	-0.52	0.604	0017773	.0010338
education	-1.243279	1.508916	-0.82	0.410	-4.2007	1.714142
part	0261911	.0937528	-0.28	0.780	2099432	.1575611
unem	.1981422	.1262468	1.57	0.117	0492969	.4455813
logpop	-56.54886	50.05317	-1.13	0.259	-154.6513	41.55356
plowage	27.4279	68.38678	0.40	0.688	-106.6077	161.4635
pmidage	26.29337	59.57642	0.44	0.659	-90.47426	143.061
temperature	.0640514	.0519971	1.23	0.218	0378611	.165964
rain	.0000563	.0007379	0.08	0.939	00139	.0015026
spring	.3650996	.7309921	0.50	0.617	-1.067619	1.797818
summer	-4.477371	1.937718	-2.31	0.021	-8.275228	6795148
fall	.9557281	.5918609	1.61	0.106	2042979	2.115754
tempspring	0372042	.0589572	-0.63	0.528	1527582	.0783497
	.1629172	.1029243	1.58	0.113	0388107	.3646451
tempsummer tempfall	0597299	.0566643	-1.05	0.292	1707899	.05133
rainspring	0004836	.0010478	-0.46	0.644	0025372	.00157
rainsummer						
	.0006253	.0007822	0.80	0.424	0009079	.0021584
rainfall		.000887	0.42	0.673	0013641	.0021128
rainsq	3.18e-07	4.31e-07	0.74	0.460	-5.26e-07	1.16e-06
tempsq	0020499	.0028085	-0.73	0.465	0075544	.0034546

GMM-type: L(2/.).logtickets

Standard: D.logprice LD.logprice L2D.logprice D.VA D.annua D.dispos D.education D.part D.unem D.logpop D.plowage D.pmidage D.temperature D.rain D.spring D.summer D.fall D.tempspring D.tempsummer D.tempfall D.rainspring D.rainsummer D.rainfall D.rainsq D.tempsq

THEATRE

Arellano-Bond dynamic panel-data estimation Group variable: sec_pro Time variable: date					of obs = of groups =	4,762 54
Time variable.	uace			Obs per	group.	
				obs per	min =	23
					avg =	88.18519
					max =	117
					ind A -	11/
Number of inst	ruments -	1 00+03		Wald ch	i2(25) =	3418.41
Number of 1130	and an erres -	1.00105		Prob >		0.0000
One-step resul	ts			1100 /		0.0000
one step resul		(Std.)	Err. adju	isted for	clustering o	n sec nro)
		(500.			cruster ing t	m sec_pro)
I		Robust				
logtickets	Coef.	Std. Err.	7	P>IZI	[95% Conf.	Interval]
logtickets						
L1.	.0893803	.0392455	2.28	0.023	.0124606	.1663
100 C			1000			
logprice						
	0369643	.0539727	-0.68	0.493	1427489	.0688203
L1.	.0722139	.0254139	2.84	0.004	.0224035	.1220243
L2.	.0159804	.0279361	0.57	0.567	0387733	.0707342
	.0155001	102/0002	0.5.	0.507		
VA	.000018	.0000322	0.56	0.576	0000452	.0000812
annua	-2.93e-06	2.28e-06	-1.28	0.200	-7.40e-06	1.55e-06
dispos	.0000559	.0000649	0.86	0.389	0000713	.000183
education	.0110505	.0998314	0.11	0.912	1846154	.2067164
part	0097301	.0104004	-0.94	0.350	0301145	.0106542
unem	.0150503	.013327	1.13	0.259	0110702	.0411708
logpop	1.069948	2.510404	0.43	0.670	-3.850354	5.99025
plowage	-20.55315	8.021663	-2.56	0.010	-36.27532	-4.830983
pmidage	-21.17076	11.20751	-1.89	0.059	-43.13706	.7955511
temperature	0375004	.0149026	-2.52	0.012	0667089	0082919
rain		.0001003	-1.70	0.089	0003672	.0000261
spring		.2102724	4.22	0.000	.4755381	1.299791
summer	-2.820531	.5557489	-5.08	0.000	-3.909779	-1.731283
fall	1.399164	.191955	7.29	0.000	1.022939	1.775389
tempspring	0579431	.0233088	-2.49	0.013	1036274	0122587
tempsummer	.0926415	.0255873	3.62	0.000	.0424913	.1427916
tempfall	1217638	.0187332	-6.50	0.000	1584802	0850473
rainspring	0003511	.0001352	-2.60	0.009	0006162	0000861
rainsummer	0006781	.0006107	-1.11	0.267	001875	.0005187
rainfall	.0007752	.0002404	3.22	0.001	.0003041	.0012463
rainsq	4.23e-08	1.58e-08	2.68	0.007	1.14e-08	7.31e-08
tempsq	0005487	.0007253	-0.76	0.449	0019702	.0008729

GMM-type: L(2/.).logtickets

Standard: D.logprice LD.logprice L2D.logprice D.VA D.annua D.dispos D.education D.part D.unem D.logpop D.plowage D.pmidage D.temperature D.rain D.spring D.summer D.fall D.tempspring D.tempsummer D.tempfall D.rainspring D.rainsummer

D.rainfall D.rainsq D.tempsq

Arellano-Bond dynamic panel-data estimation Group variable: sec_pro				Number Number	of obs = of groups =	929 50
Time variable:	date			Obs per	group.	
				obs per	min =	1
					avg =	18.58
					max =	55
					ind A	
Number of inst	ruments =	928		Wald ch	i2(26) =	1312.59
Number of 1150	and the second	520		Prob >		0.0000
One-step resul	ts			1100 /		0.0000
one step resul		(Std.	Frr. adju	usted for	clustering (on sec nro)
		(5				
		Robust				
logtickets	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
logtickets						
L1.		.040687	-6.63	0.000	3494753	1899853
logprice						
	1.000288	.1305416	7.66	0.000	.744431	1.256145
L1.	.3434617	.0992769	3.46	0.001	.1488825	.5380409
L2.	.0337834	.0718405	0.47	0.638	1070213	.1745881
				0.050	110/0215	117 15001
VA	0000545	.0002508	-0.22	0.828	0005461	.0004371
annua	.0000211	.0000197	1.07	0.286	0000176	.0000598
dispos	.0001988	.0006109	0.33	0.745	0009985	.0013961
education	-1.038412	.9747079	-1.07	0.287	-2.948805	.8719801
part	0748459	.0956287	-0.78	0.434	2622746	.1125828
unem	0491509	.1381991	-0.36	0.722	3200161	.2217143
logpop	-30.81133	28.3551	-1.09	0.277	-86.38631	24.76365
plowage	157.1422	71.80817	2.19	0.029	16.40081	297.8837
pmidage	-14.95074	84.37363	-0.18	0.859	-180.32	150.4185
temperature	.0140079	.0320483	0.44	0.662	0488055	.0768213
rain	0005946	.0007096	-0.84	0.402	0019854	.0007962
spring	.4774354	.3937969	1.21	0.225	2943924	1.249263
summer	-3.826648	1.576175	-2.43	0.015	-6.915894	7374029
fall	.8172769	.4130756	1.98	0.048	.0076636	1.62689
tempspring	0582329	.0317894	-1.83	0.067	120539	.0040732
tempsummer	.139719	.0822068	1.70	0.089	0214035	.3008414
tempfall	0725271	.0354977	-2.04	0.041	1421012	0029529
rainspring	.0011267	.0004045	2.79	0.005	.0003338	.0019196
rainsummer	.0016513	.0017441	0.95	0.344	001767	.0050697
rainfall	.0009568	.000562	1.70	0.089	0001447	.0020582
rainsq	-3.17e-07	3.06e-07	-1.04	0.300	-9.16e-07	2.82e-07
tempsq	.0009935	.0017261	0.58	0.565	0023896	.0043766

GMM-type: L(2/.).logtickets

Standard: D.logprice LD.logprice L2D.logprice D.VA D.annua D.dispos D.education D.part D.unem D.logpop D.plowage D.pmidage

D.temperature D.rain D.spring D.summer D.fall D.tempspring

D.tempsummer D.tempfall D.rainspring D.rainsummer

D.rainfall D.rainsq D.tempsq

Arellano-Bond dynamic panel-data estimation Group variable: sec_pro Time variable: date					of obs = of groups =	1,559 50
Time var idbie.	ddee			Obs per	group:	
					min =	1
					avg =	
					max =	104
Number of inst	ruments =	1.3e+03		Wald ch	i2(25) =	18734.91
				Prob >		0.0000
One-step resul	ts			0.000.00000000		
	1000	(Std.	Err. adiu	usted for	clustering of	on sec pro)
						/
		Robust				
logtickets	Coef.		z	P> z	[95% Conf.	Interval]
logtickets						
L1.		.0574084	0.04	0.967	1101701	.1148669
1000 C						
logprice						
	3779793	.2161495	-1.75	0.080	8016245	.0456659
L1.	389524	.1263237	-3.08	0.002	6371139	1419341
L2.	0640105	.171522	-0.37	0.709	4001873	.2721664
			1000			
VA	0000715	.0000869	-0.82	0.411	0002419	.0000989
annua	0000122	.0000262	-0.46	0.643	0000636	.0000393
dispos	.0000361	.0001639	0.22	0.826	0002852	.0003573
education	.180372	.1492625	1.21	0.227	112177	.4729211
part	0222811	.046497	-0.48	0.632	1134137	.0688514
unem	0219497	.0150768	-1.46	0.145	0514997	.0076003
g1tpop	-4.56e-06	.0000116	-0.39	0.694	0000273	.0000181
plowage	9.785429	19.90008	0.49	0.623	-29.218	48.78886
pmidage	-19.64586	29.8336	-0.66	0.510	-78.11864	38.82692
temperature		.0193936	-0.20	0.840	04192	.0341015
rain		.0001268	2.10	0.036	.0000175	.0005145
spring	.0100352	.0921642	0.11	0.913	1706033	.1906737
summer	-1.571934	.5168513	-3.04	0.002	-2.584944	5589245
fall	1945643	.2437636	-0.80	0.425	6723322	.2832036
tempspring	0197975	.0098973	-2.00	0.045	0391958	0003992
tempsummer	.0417491	.0292787	1.43	0.154	0156362	.0991343
tempfall	.0032461	.0167981	0.19	0.847	0296776	.0361698
rainspring	0003006	.0001145	-2.63	0.009	000525	0000762
rainsummer	.0002337	.0002402	0.97	0.331	0002371	.0007046
rainfall	0001112	.0000613	-1.82	0.069	0002313	8.87e-06
rainsq	-5.05e-08	3.00e-08	-1.68	0.093	-1.09e-07	8.36e-09
tempsq	0010414	.0009584	-1.09	0.277	0029198	.0008371

GMM-type: L(2/.).logtickets

Standard: D.logprice LD.logprice L2D.logprice D.VA D.annua D.dispos D.education D.part D.unem D.gltpop D.plowage D.pmidage

D.temperature D.rain D.spring D.summer D.fall D.tempspring

D.tempsummer D.tempfall D.rainspring D.rainsummer

D.rainfall D.rainsq D.tempsq

OPERA

Arellano-Bond dynamic panel-data estimation Group variable: sec_pro Time variable: date				Number Number	of obs = of groups =	688 35
				Obs per	group:	
					min =	1
					avg =	19.65714
					max =	95
Number of inst	ruments =	686		Wald ch		16575.80
0				Prob >	chi2 =	0.0000
One-step resul	.ts	15+d	Eng. add	isted for	clustering o	n coc nno)
		(Stu.	crr. auju	isted for	clustering c	in sec_pro)
		Robust				
logtickets	Coef.		7	PSIZ	[95% Conf	Interval]
1080108003				1/1/1	[55% Com.	Incervarj
logtickets						
L1.	0457526	.1070473	-0.43	0.669	2555615	.1640563
logprice						
	2530059	.1032815	-2.45	0.014	455434	0505779
L1.	.0260968	.0726559	0.36	0.719	1163061	.1684996
L2.	0125711	.0650675	-0.19	0.847	1401012	.1149589
	.0115/11		0.15	0.017		
VA	.0003327	.0001951	1.71	0.088	0000497	.000715
annua	0000238	.0000304	-0.78	0.433	0000834	.0000358
dispos	0003178	.0005629	-0.56	0.572	001421	.0007854
education	.6800712	1.363331	0.50	0.618	-1.992008	3.352151
part	0696401	.0843931	-0.83	0.409	2350475	.0957674
unem	.105293	.1373585	0.77	0.443	1639247	.3745107
gltpop	.0000199	.0000178	1.12	0.264	000015	.0000549
plowage	-92.95555	53.5722	-1.74	0.083	-197.9551	12.04403
pmidage	30.10444	69.41281	0.43	0.665	-105.9422	166.151
temperature	0021807	.0766278	-0.03	0.977	1523684	.1480069
rain	.003359	.0012709	2.64	0.008	.000868	.00585
spring	.6457376	.6836066	0.94	0.345	6941068	1,985582
summer	-1.669135	3.421505	-0.49	0.626	-8.37516	5.036891
fall	2311862	1.244791	-0.19	0.853	-2.670931	2.208559
			-0.19	0.791		
tempspring	0175838	.0662044			1473419	.1121744
tempsummer	.0998011	.1945616	0.51	0.608	2815327	.4811348
tempfall	.0215991	.1003582	0.22	0.830	1750993	.2182974
rainspring	0052036	.0019808		0.009	0090858	0013214
rainsummer	002955	.0015239		0.052	0059418	.0000318
rainfall	001877	.0021395		0.380	0060704	.0023163
rainsq		5.47e-07		0.089		
tempsq	0007064	.0043882	-0.16	0.872	0093071	.0078944
Instruments fo	r difference	d equation				
	pe: L(2/.).lo					
			ce L2D.lo	ogprice D	.VA D.annua D	.dispos
					plowage D.pmi	
					r D.fall D.te	
					D.rainsummer	
		ll D.rainsq				