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Abstract

A large strand of the literature on panel data models has focused on explicitly modelling the
cross-section dependence between panel units. Factor augmented approaches have been pro-
posed to deal with this issue. Under a mild restriction on the correlation of the factor loadings,
we show that factor augmented panel data models can be encompassed by a standard two-way
fixed effect model. This highlights the importance of verifying whether the factor loadings
are correlated, which, we argue, is an important hypothesis to be tested, in practice. As a
main contribution, we propose a Hausman-type test that determines the presence of correlated
factor loadings in panels with interactive effects. Furthermore, we develop two nonparametric
variance estimators that are shown to be robust to the presence of heteroscedasticity, autocor-
relation as well as slope heterogeneity. Via Monte Carlo simulations, we demonstrate desirable
size and power performance for the proposed test, even in small samples. Finally, we provide
extensive empirical evidence in favour of uncorrelated factor loadings in panels with interactive
effects.
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1 Introduction

Panel data models have been increasingly popular in applied economics and finance, due to

their ability to model various sources of heterogeneity. A standard practice is to impose strong

restrictions on error cross-section dependence (CSD). This takes the form of independence across

individual units under the fixed effects model whilst a common time effect severely restricts the

nature of CSD under the random effects specification.

The pervasive evidence detecting the presence of strong CSD in panels over the last decade

(e.g., Pesaran (2015)), has prompted a large number of studies to develop proper economet-

ric methodologies for modelling CSD, mainly through the structure of interactive effects. This

introduces heterogeneous unobserved factors into the error components, allowing for a richer

cross-sectional covariance structure.

Currently, there are two leading approaches that have received considerable attention in the

literature, see Chudik and Pesaran (2015) for a survey. The first, based on principal component

(PC) estimation, estimates the factors jointly with the main slope parameters. This approach has

been exhaustively analysed by Bai (2009), and extended by, e.g., Charbonneau (2017), Fernandez-

Val and Weidner (2016), and Moon and Weidner (2015). The second approach, advanced by

Pesaran (2006), treats factors as nuisance terms, and removes their effects through proxying them

by the cross-section averages of regressors as well as the dependent variable. This is referred to

as the common correlated effects (CCE) estimator. A growing number of extensions have also

been developed by, e.g., Chudik and Pesaran (2015), Kapetanios, Pesaran, and Yamagata (2011),

and Westerlund and Urbain (2015). The finite sample performance of the two approaches has

been intensively investigated. The earlier studies by Kapetanios and Pesaran (2005) and Chudik,

Pesaran, and Tosetti (2011), provide Monte Carlo evidence in favour of the CCE estimator, which

is partly due to uncertainty associated with estimating the true number of unobserved factors, see

also Moon and Weidner (2015). Westerlund and Urbain (2015) provide an insightful summary

arguing that the PC estimator performs better if the coeffi cients on regressors are zero while the

CCE estimator tends to be superior otherwise, albeit in a restricted context.

The conventional wisdom has so far been that the standard two-way fixed effects (FE) estima-

tor would be inappropriate and inconsistent in the presence of interactive effects, due to ignoring

the potential endogeneity arising from the correlation between regressors and factors and/or fac-

tor loadings (e.g. Bai (2009)). In this paper, we first highlighting a simple fact that has been

almost neglected in this literature. We note that the FE estimator is not always inconsistent even

in the presence of unobserved factor structure. In the case where the factor loadings are uncor-

related,1 the FE estimator is shown to be consistent, albeit ineffi cient.2 Furthermore, we provide

1Notice that this is the maintained assumption in the CCE literature, see Pesaran (2006).
2We find that only Coakely, Fuertes, and Smith (2006) and, more recently, Sarafidis and Wansbeek (2012) briefly

mention this fact. Recently, Westerlund (2018) argues that the FE estimator can be consistent in the presence of
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two nonparameteric variance estimators that are robust to the presence of heteroscedasticity,

autocorrelation and slope heterogeneity.

Via Monte Carlo studies, we find that the FE and CCE estimators display a similar and

satisfactory performance when factor loadings satisfy an uncorrelatedness condition whereas the

performance of PC is more or less satisfactory except in small samples. As expected, the per-

formance of both CCE and FE estimators worsens significantly under correlated factor loadings,

which is in line with Westerlund and Urbain (2013). By contrast, the performance of the PC

estimator is not unduly affected by correlated factor loadings.

A number of specification tests have been proposed to testing the validity of the cross section

dependence or the presence of interactive effects, e.g. Pesaran (2015), Sarafidis, Yamagata, and

Robertson (2009), Bai (2009) and Castagnetti, Rossi, and Trapani (2015). Notice, however, that

the rejection of the null hypothesis by these tests does not determine whether the FE estimator

is consistent or not under the alternative model with unobserved factors. For instance, Sarafidis,

Yamagata, and Robertson (2009) maintain an assumption that factor loadings are uncorrelated

under the alternative whilst the Hausman test proposed by Bai (2009) would have no power when

factor loadings are uncorrelated, under the alternative hypothesis. This suggests that the presence

of correlated loadings emerges as an influential but under-appreciated feature of the panel data

model with interactive effects, see also Westerlund and Urbain (2013).

In retrospect, it is rather surprising to find that the literature has been silent on investigating

the important issue of testing the validity of uncorrelated factor loadings. In order to fill this gap,

as the main contribution of this paper, we proceed to develop a Hausman-type test that determines

the validity of correlated factor loadings in cross-sectionally correlated panels. Both the FE and

PC estimators are consistent under the null hypothesis of uncorrelated factor loadings whilst only

the latter is consistent under the alternative hypothesis of correlated factor loadings. Further, the

PC estimator is more effi cient even under the null. Based on this observation, we develop two

nonparametric variance estimators for the difference between the FE and PC estimators, that are

shown to be robust to the presence of heteroscedasticity, autocorrelation and slope heterogeneity.

We then show that the proposed test statistic follows the χ2 distribution asymptotically. Monte

Carlo simulation results confirm that the size and the power of the test is quite satisfactory even

in small samples. Given that the (estimated) number of factors can make a considerable difference

in the performance of the PC estimator, we also propose a pretest estimator which selects either

the FE estimator if the null hypothesis of uncorrelated factor loadings is not rejected, or the PC

estimator if the null is rejected. We find that the pretest estimator performs well, irrespective of

whether factor loadings are correlated or not.

Finally, and crucially, we provide extensive empirical evidence, suggesting the lack of factor

interactive effects, because both FE and CEE estimators belong to a class of estimators that satisfy a zero sum
restriction. However, he still maintains the crucial assumption that factor loadings are uncorrelated.
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loadings correlation in a number of datasets considered. We emphasize that the FE estimator

is simpler and does not involve any complex issues related to selecting the correct number of

unobserved factors, which has been shown to significantly affect the performance of PC estimators.

This suggests that the standard FE estimator can still be of considerable applicability in a wide

variety of cross-sectionally correlated panel datasets.

The paper proceeds as follows. Section 2 describes the model setup and derives the simple

fact that the FE estimator is still consistent in the presence of interactive effects under the

assumptions maintained in the CCE literature. Section 3 develops the Hausman-type test for

the validity of uncorrelated factor loadings, which is the crucial condition, for the FE estimator

to be consistent. Section 4 employs a range of Monte Carlo simulations to investigate the finite

sample properties of the alternative estimators and the proposed test. Section 5 presents empirical

evidence documenting that the null of uncorrelated factor loadings is not rejected for many dataset

we investigate. Section 6 offers some concluding remarks, while mathematical proofs and data

descriptions are collected in the Appendices.

2 The Model and the Simple Fact

Consider the following panel data model with interactive effects:

yit = αi + β′ixit + γ ′if t + εit (1)

xit = bi + Γ′if t + vit (2)

where yit is the dependent variable of the i−th cross-sectional unit in period t, xit is the k × 1

vector of covariates with βi the k × 1 vector of parameters. αi and bi are unobserved individual

effects, and εit and vit are idiosyncratic errors. f t is an r×1 vector of unobserved common factors

while γi and Γi are random heterogenous loadings.

Following Pesaran (2006) and Karabiyik, Reese, and Westerlund (2017), we make the following

assumptions:

Assumption A. (i) εit is independently distributed across i with E (εit) = 0, E
(
ε2it
)

= σ2εi

and E
(
ε8+δit

)
< ∞ for some δ > 0. Each εit follows a linear process with absolutely summable

autocovariances.

(ii) uit is independently distributed across i with E (vit) = 0, E (vitv
′
it) = Σvi and E

(
‖vit‖8+δ

)
<

∞ for some δ > 0, where Σvi is a k × k positive definite matrix and ‖A‖ =
√
tr (A′A) is the

Frobenius norm. Further, Σv = limN→∞N
−1∑N

i=1Σvi is a positive definite matrix. Each vit

follows a vector linear process with absolutely summable autocovariance matrix norms.

(iii) f is covariance stationary such that E
(
‖f t‖4

)
<∞ and E

(
f tf

′
t

)
= Σf where Σf is an

r × r positive definite matrix.
(iv) εit, vjs and f` are mutually independent for all i, j, t, s and `.
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(v) γi and Γi are iid across i and mutually uncorrelated, with finite means, γ̄ and Γ̄ and finite

variances, Σγ and ΣΓ, respectively. Further, they are independent of εjt, vjt and f t for all i and

j.

(vi) The k × 1 vector of heterogeneous parameters, βi are generated as βi = β + ηi. ηi
is independent across i, E (ηi) = 0, E (ηiη

′
i) = Ωηη,i which is a fixed positive definite matrix

uniformly for every i, E ‖ηi‖4 ≤ ∆ < ∞ and ‖β‖ < ∞, and ηi is group-wise independent of εit,
vit, γi and Γi.

Assumption A is standard in the literature. For simplicity we assume that both εit and vit

are iid. But, we will also allow them to be serially correlated and conditionally heteroscedastic

as well as weakly cross-sectionally correlated as in Assumption C in Bai (2009) and Assumptions

B1 and B2 in Hayakawa, Nagata, and Yamagata (2018), hereafter, HNY. We then develop the

nonparametric variance estimators for the model with unobserved interactive effects, which are

shown to be robust to heteroscedasticity, serial correlation and slope heterogeneity.

Combining (1) and (2), we have the system representation:

zit = µi + Φif t + eit (3)

where

zit =

(
yit
xit

)
,µi =

(
αi + β′ibi

bi

)
,Φi =

(
Γ′i + β′iΓ

′
i

Γ′i

)
, eit =

(
εit + β′ivit

vit

)
(4)

where the covariance matrix of eit is given by

Σei =

[
σ2εi + β′iΣviβ

′
i β′iΣvi

Σviβ
′
i Σvi

]
For a consistent estimation of the parameters in (1), we need to first account for the unobserved

factors, and then estimate β by applying some panel estimator to (1) with defactored variables.

On the basis of this idea, two popular approaches have been proposed. The first approach,

advanced by Pesaran (2006) and referred to as the common correlated effects (CCE) estimator,

proxies factors by the cross-section averages of the dependent and regressors. The second is the

principal component (PC) approach, that estimates the factors jointly with the slope parameters.

The validity of both approaches depends crucially upon whether the appropriate rank condition

holds. Note (Westerlund and Urbain, 2015, Remark 4 on p.374) argue that the issue of correctly

selecting the number of factors, r in the PC estimation, is essentially the same as the problem of

satisfying the rank condition, Rank
(
1
N

∑N
i=1Φi

)
= r ≤ k + 1 in CCE estimation.3 Further, it is

shown that both estimators involve bias terms, which do not disappear unless N/T → 0. Monte

Carlo simulations suggest that the performance of the PC estimator is sensitive to the value of

3Karabiyik, Reese, and Westerlund (2017) also investigate the importance of the rank condition in deriving the
asymptotic distribution of the CCE estimator.
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β. For β = 0, the PC estimator outperforms CCE, while for β 6= 0, the CCE estimator tends to

outperform.

Surprisingly, however, we find that the performance of the two-way Fixed Effect (FE) estimator

has not been explicitly investigated in the presence of unobserved multifactor structures, except for

the studies by Coakely, Fuertes, and Smith (2006) and, more recently, by Sarafidis and Wansbeek

(2012). Such an omission simply reflects the conventional view that the FE estimator would be

inappropriate or inconsistent in the presence of interactive effects, due to ignoring endogeneity

stemming from the correlation between regressors and factors and/or factor loadings.

We aim to challenge the above maintained view in the literature. To this end we assume

βi = β for all i = 1, ..., N without loss of generality and represent (1) as the two-way error

component model:

yit = αi + θt + x′itβ + uit (5)

where θt = f ′tγ and uit = εit + f ′t (γi − γ) with γ = E (γi). Under Assumptions A (especially,

A(v)), it is easily seen by the independence of γi − γ from all other random quantities in the

model that

E (uitθt) = E
(
εit + f ′t (γi − γ)

)
f ′tγ = E

(
εitf

′
tγ
)

+ E
(
f ′t (γi − γ)f ′tγ

)
= 0, (6)

E (uitxit) = E
(
εit + f ′t (γi − γ)

) (
bi + Γ′if t + vit

)
= 0. (7)

In this situation it is easily seen that the two-way FE estimation can still produce an unbiased

estimator of β. Applying the two-way within transformation to yit and xit in (1), we obtain the

transformed model as

ẏit = ẋ
′
itβ + u̇it, (8)

where

ẏit = yit − yi. − y.t + y.., ẋit = xit − xi. − x.t + x.., u̇it = uit − ui. − u.t + u..,

and

zi. = T−1
T∑
t=1

zit, z.t = N−1
N∑
i=1

zit, z.. = (NT )−1
N∑
i=1

T∑
t=1

zit for z = y,x, u

Under (6) and (7), it follows that E (u̇itẋit) = 0 since E(ui.ẋit) = E (u.tẋit) = E (u..ẋit) = 0.

Therefore, when factor loadings, γi and Γi, are uncorrelated under Assumption A(v), we can

apply FE estimation to obtain a consistent (albeit ineffi cient) estimator of β in (8). Conversely,

if γi and Γi are correlated, it is clear that E (uitxit) 6= 0 so that the FE estimator is inconsistent.

Notice that the consistency of the FE estimator requires only γi to be uncorrelated with Γi (and
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εit,uit,f t), but this is a maintained assumption in the CCE literature, see Westerlund and Urbain

(2015).4

Applying the pooled estimation to (8), we obtain the two-way FE estimator of β by

β̂FE =

(
N∑
i=1

Ẋ
′
iẊi

)−1 N∑
i=1

Ẋ
′
iẏi (9)

where Ẋi = (ẋi1, ..., ẋiT )′ and ẏi = (ẏi1, ..., ẏiT )′. Further, we propose the two consistent versions

of the variance estimator, which are shown to be robust to the heteroscedasticity and the serial-

correlation as well as the slope heterogeneity. The first is the nonparametric variance estimator,

similarly applied in deriving the variance of the CCE estimator by Pesaran (2006):

V̂
NON

(
β̂FE

)
(10)

=

(
N∑
i=1

Ẋ
′
iẊi

)−1( N∑
i=1

(
Ẋ
′
iẊi

)(
β̂FE,i − β̂FE

)(
β̂FE,i − β̂FE

)′ (
Ẋ
′
iẊi

))( N∑
i=1

Ẋ
′
iẊi

)−1

where β̂FE,i =
(
Ẋ
′
iẊi

)−1
Ẋ
′
iẏi. Next, we consider the following heteroscedasticity, autocorrela-

tion and slope heterogeneity robust variance estimator (see HNY):

V̂
HAC

(
β̂FE

)
=

(
N∑
i=1

Ẋ
′
iẊi

)−1( N∑
i=1

Ẋ
′
iûiû

′
iẊi

)(
N∑
i=1

Ẋ
′
iẊi

)−1
(11)

where ûi = ẏi − Ẋiβ̂FE .

We show that β̂FE is
√
N -consistent and asymptotically normal.

Theorem 1 Under Assumption A, as N,T →∞,
√
N
(
β̂FE − β

)
→d N

(
0k×1,Ψ

−1
FERFEΨ−1FE

)
(12)

where

ΨFE = lim
N→∞

1

N

N∑
i=1

E

(
Ẋ
′
iẊi

T

)
= lim

N→∞

1

N

N∑
i=1

E

(
Γ̃
′
i

F̃
′
F̃

T
Γ̃i

)
+ Σu,

F̃ =
[
(f1 − f̄), ..., (fT − f̄)

]′ with f̄ = 1
T

∑T
t=1 f t, Γ̃i = Γi−Γ̄ with Γ̄ = 1

N

∑N
i=1 Γi, and RFE =

R1,FE if βi = β and RFE = R1,FE +R2,FE, if βi = β + ηi, where

R1,FE = lim
N→∞

1

N

N∑
i=1

E

(
Ẋ
′
iF̃

T
γ̃iγ̃

′
i

F̃
′
Ẋi

T

)
(13)

4Pesaran (2006) implicitly assumes that the factor loadings are uncorrelated. Bai (2009) discusses this implication
in detail, and shows via simulations that the CCE estimator is biased when xit is correlated with both λi and f t.
Remark 2 of Westerlund and Urbain (2013) questions the uncorrelated factor loadings assumption by arguing that
a common shock that has a positive effect on savings, should have negative effects on interest rates. However,
their discussion relates to the sign of the average effect of common shocks or the sign of the cross-section mean
of loadings. Since the independence assumption does not restrict the sign of these means, the relevance of such a
relaxation would be somewhat questionable.
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R2,FE = lim
N→∞

N∑
i=1

E

(
Ẋ
′
iẊi

T
ηiη

′
i

Ẋ
′
iẊi

T

)
, (14)

and γ̃i = γi − γ̄ with γ̄ = 1
N

∑N
i=1 γi. Furthermore,

V̂
NON

(
β̂FE

)−1/2 (
β̂FE − β

)
→d N (0, Ik) and V̂

HAC
(
β̂FE

)−1/2 (
β̂FE − β

)
→d N (0, Ik) .

(15)

The main message is that two-way FE estimation can produce a consistent estimator of β

under Assumption A(v), irrespective of whether the rank condition holds or not. This simple

fact that the FE estimator is not always inconsistent even in the presence of unobserved factor

structure, has been almost neglected in the literature.5 Conversely, if the factor loadings, γi and

Γi, are correlated, the FE estimator becomes inconsistent. In this case the CCE estimator may

also be inconsistent in general, but it can be consistent only in the special case with the full rank,

namely r = k + 1. See Westerlund and Urbain (2013) for the simulation evidence showing that

the CCE estimator performs poorly when the factor loadings are correlated.

Recently, Westerlund (2018) shows that if the true model is given by (1), one can obtain

transformed regressors, say x̄it, such that ∑
i

X̄i = 0, (16)

where X̄i = (x̄i1, ..., x̄iT )′. Then, the following pooled OLS estimator

β̂ZS =

(∑
i

X̄
′
iX̄i

)−1∑
i

X̄
′
iyi, (17)

will be consistent, where the subscript ZS stands for zero sum. However, Assumption A(v) is still

maintained in this analysis, which is the crucial condition for consistency of the ZS estimator.6

Furthermore, the use of both (16) and (17) raises some issues. First, it is not clear how the FE

estimator belongs to the class of ZS estimators, β̂ZS , since the FE estimator uses a transformed

dependent variable while β̂ZS does not. Next, the following crucial restriction is imposed for

consistency: (∑
i

X̄
′
iX̄i

)−1∑
i

X̄
′
iXiβ = β, (18)

where Xi = (xi1, ...,xiT )′. Though both FE and CCE estimators satisfy (18), it is unclear how

to construct general X̄i satisfying this condition.

5We find that only Sarafidis and Wansbeek (2012) have provided similar discussions.
6We notice that these results can be obtained only if the factor loadings are uncorrelated or the full rank condition

is met. Surprisingly, Westerlund (2018) does not provide any simulation evidence for the cases with correlated factor
loadings and rank deficiency.
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3 Testing for Correlated Factor Loadings

A number of specification tests have been proposed to test the validity of the cross section depen-

dence or the presence of the multiplicative interactive effects in panels. The most popular test is

the so-called CD test proposed by Pesaran (2015), who showed that the CD test can be applied to

a wide variety of models, including heterogeneous dynamic panel data models, even with multiple

breaks and non-stationary variables. However, the CD test fails to reject the null hypothesis of

no error CSD when the factor loadings have zero means, implying that the CD test will display

very poor power when it is applied to cross-sectionally demeaned data. Sarafidis, Yamagata, and

Robertson (2009) propose an alternative testing procedure for the homogeneous factor loadings

after estimating a linear dynamic panel data model by GMM. This approach is valid only when

N is large relative to T , but it can be applied to testing for any error cross section dependence

remaining after including time dummies. But, Sarafidis, Yamagata, and Robertson (2009) still

maintain an assumption that the factor loadings are uncorrelated (see Assumption 5(b)). If the

factor loadings are correlated under the alternative hypothesis, it is easily seen that the proposed

GMM-based test will be invalid because the GMM estimator is no longer consistent under the

alternative.

The PC estimator is consistent both under models with additive effects and with interactive

effects, but less effi cient than the FE estimator under the null model with additive effects only.

On the other hand, the FE estimator is inconsistent under the alternative model with interactive

effects and correlated factor loadings. Following this idea, Bai (2009), Section 9, advances a

Hausman test for testing the null hypothesis of additive effects against the alternative of interactive

effects. Focussing on the special cases, Castagnetti, Rossi, and Trapani (2015) propose two tests

for the null of no factor structure: one for the null that factor loadings are cross sectionally

homogeneous, and another for the null that common factors are homogeneous over time. Using

extremes of the estimated loadings and common factors, they show that their statistics follow an

asymptotic Gumbel distribution under the null.7

The conventional wisdom is that if the null hypothesis of no error CSD or additive effects

is rejected, the use of the standard FE estimator would be invalid due to ignoring the potential

endogeneity arising from the correlation between regressors and unobserved factors. We have

shown that the presence of CSD or interactive effects does not imply that the FE estimator is

always inconsistent even in the presence of unobserved factor structure. In particular, if the factor

loadings are uncorrelated, we showed that the FE estimator is still consistent, albeit ineffi cient.

More importantly, the FE estimator avoids any issue related to selecting the correct number of

7Castagnetti, Rossi, and Trapani (2015) do not consider the two-way FE estimator; they consider the one-way
FE estimator when testing f t = f for all t whilst considering the between estimator when testing γi = γ for all i.
Furthermore, Castagnetti, Rossi, and Trapani (2015) show that the average-type statistics diverge under the null
while the Hausman-type ones are inconsistent.
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unobserved factors, which has been shown to significantly affect the performance of both CCE

and PC estimators, e.g. Westerlund and Urbain (2015), Remark 4 on p.374.

In this regard, it is rather surprising to find that the literature has been silent on investigating

an important issue of testing the validity of uncorrelated factor loadings in panels with interactive

effects. For example, Sarafidis, Yamagata, and Robertson (2009) maintains an assumption that

factor loadings are uncorrelated under the alternative. If they are correlated, their proposed test

becomes invalid. Notice that the Hausman test developed by Bai (2009) would be valid only if

regressors are correlated with both factors and loadings. Further, we find that Bai’s test has no

power if the factor loadings are uncorrelated under the alternative model with interactive effects.

This raises a potentially important research question in practice. For large T , without loss of

generality, we suppose that f t represent the unobserved common policy or globalisation trend,

and γi are the associated heterogeneous individual responses (parameters). In this context, it is

natural to allow for xit to be correlated with f t to avoid the potential omitted variables bias.

But, it still remains an important issue to test whether xit are correlated with γi or not.
8

Given the pervasive evidence of cross sectionally dependent errors in panels (see Pesaran

(2015)), as the main contribution of this paper, we proceed to develop a Hausman-type test that

determines the presence of uncorrelated factor loadings in cross-sectionally correlated panels. In

terms of the model, (1) and (2) with interactive effects, recall that both the two way FE estimator

and the PC estimator are consistent under the null hypothesis that factor loadings, γi and Γi are

uncorrelated. Only the latter is consistent under the alternative of correlated loadings. Following

this idea, we propose the Hausman-type test based on the difference between the FE and PC

estimators:

H =
(
β̂FE − β̂PC

)′
V −1

(
β̂FE − β̂PC

)
(19)

where β̂PC is the PC estimator to be defined below, and V = V ar
(
β̂FE − β̂PC

)
= V ar

(
β̂FE

)
+

V ar
(
β̂PC

)
− 2Cov

(
β̂FE , β̂PC

)
. Notice that both estimators are consistent under the null hy-

pothesis, but the PC estimator is more effi cient than the FE estimator even under the null. This

implies that

V ar
(
β̂FE − β̂PC

)
6= V ar

(
β̂FE

)
− V ar

(
β̂PC

)
in contrast to the well-established finding in Hausman (1978). We interpret (19) as a test for

correlated factor loadings in panels with interactive effects.

Before developing the asymptotic theory for the Hausman-type statistic, we describe the as-

8For small T , we argue that γi represent unobserved individual heterogeneity and f t are the associated time-
varying parameters. In this context, it is sensible to allow for xit to be correlated with γi. But, we still need to
test whether xit are correlated with f t or not.
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ymptotic distribution of the bias-corrected PC estimator given by9

β̂PC = β̄PC −
1

N
ĉNT

where

β̃PC =

(
N∑
i=1

X ′iM F̂Xi

)−1 N∑
i=1

X ′iM F̂yi,

is the uncorrected PC estimator, M F̂ = IT − F̂
(
F̂
′
F̂
)−1

F̂
′
, and F̂ is estimated by

√
T times

the eigenvectors corresponding to the r largest eigenvalues of N−1
∑N

i=1ZiZ
′
i, Zi = (yi,Xi) ,

and ĉNT is a bias correction term. We consider both versions of the bias-corrected PC estimators

proposed by Bai (2009) and HNY (see Appendix 9 for the details on the bias corrected PC

estimator).

Next, we propose two robust versions of the variance estimator as follows:

V̂ NON
(
β̂PC

)
(20)

=

(
N∑
i=1

X ′iM F̂Xi

)−1( N∑
i=1

(
X ′iM F̂Xi

) (
β̂PC,i − β̂PC

)(
β̂PC,i − β̂PC

)′ (
X ′iM F̂Xi

))( N∑
i=1

X ′iM F̂Xi

)−1

where β̂PC,i =
(
X ′iM F̂Xi

)−1
X ′iM F̂yi , and

V̂
HAC

(
β̂PC

)
=

(
N∑
i=1

X ′iM F̂Xi

)−1( N∑
i=1

X̂
′
iV̂ iV̂

′
iX̂i

)(
N∑
i=1

X ′iM F̂Xi

)−1
(21)

where V̂ i = yi −Xiβ̂PC .

We provide the asymptotic results for the β̂PC estimator in Theorem 2.

Theorem 2 Suppose that Assumption A holds. In the homogenous case with βi = β for all i, as

N,T →∞,
√
NT

(
β̂PC − β

)
→d N

(
0k×1,Ψ

−1
PCR1,PCΨ−1PC

)
(22)

where

ΨPC = lim
N→∞

1

N

N∑
i=1

E

(
V ′iV i

T

)
,

R1,PC = lim
N→∞

N−1
N∑
i=1

E

(
V ′iεiε

′
iV i

T

)
(23)

9Notice that the model, (1) can be written as

yi = αiiT +Xiβ + Fγi + εi

and the one-way within transformation has already been applied such that

ỹi = X̃iβ + F̃ γi + ε̃i

where ỹit = yit − ȳi with ȳi = T−1
∑T

i=1 yit. For notational simplicity we use yi = ỹi and Xi = X̃i.
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and V i = (vi1, ...,viT )′. In the heterogenous case with βi = β + ηi, as N,T →∞,
√
N
(
β̂PC − β

)
→d N

(
0k×1,Ψ

−1
PCR2,PCΨ−1PC

)
(24)

where

R2,PC = lim
N→∞

N−1
N∑
i=1

E

(
V ′iV i

T
ηiη

′
i

V ′iV i

T

)
(25)

Furthermore,

V̂
NON

(
β̂PC

)−1/2 (
β̂PC − β

)
→d N (0, Ik) and V̂

HAC
(
β̂PC

)−1/2 (
β̂PC − β

)
→d N (0, Ik) .

(26)

Having established that the two versions of the robust estimator can consistently standardise

the estimator, we propose to account for the covariance Cov
(
β̂FE , β̂PC

)
by setting10

ĈNON
(
β̂FE , β̂PC

)
=

(
N∑
i=1

Ẋ
′
iẊi

)−1( N∑
i=1

(
Ẋ
′
iẊi

)(
β̂FE,i − β̂FE

)(
β̂PC,i − β̂PC

)′ (
X ′iM F̂Xi

))( N∑
i=1

X ′iM F̂Xi

)−1
and

Ĉ
HAC

(
β̂FE , β̂PC

)
=

(
N∑
i=1

Ẋ
′
iẊi

)−1( N∑
i=1

Ẋ
′
iûiV̂

′
iX̂i

)(
N∑
i=1

X ′iM F̂Xi

)−1
.

Accordingly, we define two operating versions of the Hausman-type statistic by

HNON =
(
β̂FE − β̂PC

)′ (
V̂
NON

)−1 (
β̂FE − β̂PC

)
(27)

HHAC =
(
β̂FE − β̂PC

)′ (
V̂
HAC

)−1 (
β̂FE − β̂PC

)
(28)

where

V̂
NON

= V̂
NON

(
β̂FE

)
+ V̂

NON
(
β̂PC

)
− 2Ĉ

NON
(
β̂FE , β̂PC

)
(29)

V̂
HAC

= V̂
HAC

(
β̂FE

)
+ V̂

HAC
(
β̂PC

)
− 2Ĉ

HAC
(
β̂FE , β̂PC

)
(30)

We provide the main result in the following Theorem.

Theorem 3 Under Assumption A, as N,T →∞,

Hj →d χ
2
k for j = NON,HAC

There is ample evidence, as will be seen in the Monte Carlo section, that the CCE and the

FE estimators perform comparably to the PC estimator in small samples, if the null hypothesis

is not rejected. Hence, the proposed Hausman-type test statistic has a clear operational rationale

in practice.
10Following Bai (2009), we have also employed the analytic (sandwich-form) variance estimator of V , taking into

account unknown form of heteroscedastic and autocorrelated errors. After conducting the preliminary simulations,
we come to a conclusion that the two robust versions of the estimators perform quite satisfactory even in the
presence of slope parameter heterogeneity.
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4 Monte Carlo Simulations

4.1 Review of previous studies

Westerlund and Urbain (2013) examine the small sample performance of the CCE estimator in

the presence of correlated factor loadings, and find that the CCE is inconsistent in the presence

of correlated factor loadings, especially if the rank condition is not satisfied. But, the CCE

performs reasonably well under the full rank case. Karabiyik, Reese, and Westerlund (2017)

discuss the role of the rank condition in the CCE estimation, and show that the second moment

matrix of the estimated factors becomes asymptotically singular if the number of factors is strictly

less than the number of dependent and independent variables, invalidating the key arguments

commonly applied to establish the asymptotic theory. Westerlund and Urbain (2015) provide

a formal comparison between the cross-sectional average (CA) and principal component (PC)

estimators by employing he same data generating process (DGP) in the framework of the factor

augmented regressions.11 They show that the two estimators are asymptotically the same only if

N/T → 0 whereas their asymptotic distributions are no longer equivalent, especially in terms of

the asymptotic biases, if N/T → τ > 0. More importantly, the performance of the PC estimator

is shown to be highly sensitive to the value of β. For β = 0, the PC estimator outperforms the

CA estimator whilst for β 6= 0, the CA estimator outperforms.12

Though a number of papers have examined the small sample performance of the CCE and

PC estimators, we find that only two studies by Sarafidis and Wansbeek (2012) and Westerlund

(2018), have explicitly analysed the performance of the FE estimator in the presence of cross

section dependence. Assuming the homogenous slope parameters with N = 100 and T = 50,

Sarafidis and Wansbeek (2012) compare the performance of the CCE, the PC and the (two-way)

FE estimators. If the factor loadings are uncorrelated and the rank condition is satisfied, they

find that all these three estimators perform well in terms of bias and RMSE. When the factor

loadings are correlated, the FE estimator is severely biased, irrespective of whether the rank

condition is satisfied or not. The CCE estimator is substantially biased if the rank condition is

violated. On the other hand, the performance of the PC estimator is not significantly affected by

the presence of correlated factor loadings, and the performance under uncorrelated and correlated

factor loadings is qualitatively similar. Still, assuming that factor loadings are uncorrelated,

11Notice that the DGP and the estimators are not identical to what have proposed by Pesaran (2006) and Bai
(2009).
12The small sample proprieties of the CCE estimator have also been investigated in a dynamic framework.

Chudik and Pesaran (2015) develop the dynamic mean group CCE (CCEMG) estimator where the unobserved
factors are approximated by the cross-section averages of yit and xit as well as their lagged values. They compare
the relative performance of the quasi maximum likelihood estimator by Moon and Weidner (2015), the interactive-
effects estimator by Bai (2009), and the alternative MG estimator based on the Song (2013)’s extension of the
iterative PC estimator. Their Monte Carlo simulation results are mixed. If the parameter of interest is the mean of
the parameters on exogenous regressors, the CCEMG estimator performs relatively well. But, if the parameter of
interest is the mean coeffi cient on the lagged dependent variable, the CCEMG estimator as well as other estimators
do not perform well. See also De Vos and Everaert (2001) for similar findings.
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Westerlund (2018) demonstrates that the performance of the FE and CEE estimators is similar

and satisfactory. Surprisingly, however, he does no longer consider the role of the rank condition

and/or the correlated factor loadings as in Westerlund and Urbain (2013).

We will examine the relative performance of the FE, CCE and PC estimators in the presence

of correlated and uncorrelated factor loadings and/or rank deficiency. Furthermore, we investi-

gate the small sample performance of the proposed Hausman-type statistic testing for the null

hypothesis of uncorrelated factor loadings in cross-sectionally dependent panels.

4.2 Monte Carlo design

Following the model, (1) and (2), we generate the data with mx = 1, mf = 2 and αi = bi = 0:

yit = βixit + γ1if1t + γ2if2t + εit, (31)

and

xit = Γ1if1t + Γ2if2t + uit, (32)

where (f1t, f2t, εit, uit)
′ are drawn from the multivariate normal distribution with zero means and

covariance matrix, Σi = diag
(
σ2
f1
, σ2

f2
, σ2εi , σ

2
ui

)
. We follow Pesaran (2006) and Westerlund and

Urbain (2013), and generate the factor loadings, (γ1i, γ2i) and (Γ1i,Γ2i) as follows:

• Experiment 1 with uncorrelated factor loadings and the full rank in which case γ1i ∼

iidN(1, 1), γ2i ∼ iidN(0, 1), Γ1i ∼ iidN(0, 1), Γ2i ∼ iidN(1, 1) such that E
(
γ1i γ12
Γ1i Γ12

)
=(

1 0
0 1

)
.

• Experiment 2 with uncorrelated factor loadings and the rank deficiency in which case γ1i ∼

iidN(1, 1), γ2i ∼ iidN(0, 1), Γ1i ∼ iidN(1, 1), Γ2i ∼ iidN(0, 1), such that E
(
γ1i γ12
Γ1i Γ12

)
=(

1 0
1 0

)
.

• Experiment 3 with correlated factor loadings and the full rank in which case: γ1i = γ1+υ1i,

γ2i = γ2 + υ2i, Γ1i = Γ1 + υ1i, and Γ2i = Γ2 + υ2i with γ1 = 1, γ2 = 0, Γ1 = 2, Γ2 = 1 and

(υ1i, υ2i) ∼ iidN(0, I2), such that E
(
γ1i γ12
Γ1i Γ12

)
=

(
1 0
2 1

)
• Experiment 4 with correlated factor loadings and the rank deficiency in which case γ1i ∼

iidN(1, 1), γ2i ∼ iidN(0, 1), γ1i = Γ1i and γ2i = Γ2i such that E
(
γ1i γ12
Γ1i Γ12

)
=

(
1 0
1 0

)
.

For the main slope parameter, β in (31), we consider the homogeneous case with βi = 1 for all

i, and the heterogenous case with βi = 1 + ηi and ηi ∼ iidN (0, 0.04). We consider the following

combination of (N,T ) = 20, 30, 50, 100, 200, and set the number of replications at R = 1, 000.
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4.3 The small sample performance of FE, CCE and PC estimators

We examine the finite sample performance of the following estimators being applied to the model

(1) and (2): the two-way fixed effect (FE) estimator, β̂FE , the CCE estimator proposed by Pesaran

(2006), β̂CCE , and the bias corrected principal component (PC) estimators proposed respectively

by Bai (2009) and HNY, denoted β̂PCBai and β̂PCHNY . We consider both pooled and mean

group estimators except for β̂PCBai (see Appendix 7 for details). Notice that consistency of the

PC estimator depends crucially upon correctly selecting the number of unobserved factors (e.g.

Moon and Weidner (2015)). In this regard, to address the potential uncertainty associated with

the selection criteria, we initially consider the two information criteria, denoted ICp1 and AIC1,

proposed by (Bai and Ng, 2002, pag 202). Overall, we find that the PC estimator using ICp1

outperforms that with AIC1, and we only report the results based on ICp1.

We report the following summary statistics:

• Bias: β̂R − β0, where β0 is a true parameter value and β̂R = R−1
∑R

r=1 β̂r is the mean

coeffi cient of β̂r across R replications.

• RMSE: the root mean square error estimated by
√
R−1

∑R
r=1

(
β̂r − β0

)2
Table 1 shows the simulation results for Experiment 1 with the full rank, uncorrelated factor

loadings and homogeneous β’s. We find that the biases of all estimators are mostly negligible even

for the relatively small samples with the FE performing slightly worse than other estimators when

N = 20. The relative performance of the FE, CCE and PC estimators is generally in line with

the simulation results reported in Chudik, Pesaran, and Tosetti (2011), Sarafidis and Wansbeek

(2012) and HNY. The results for RMSEs display qualitatively similar patterns. RMSEs of CCE

and PC estimators are lower than those of the FE estimators and decline as N or T grows.

An important exception is the poor performance of the PC estimator evaluated using the AIC1

criterion.13 In this case the biases are substantial and nonnegligible in small samples, especially

for the β̂PCHNY estimator. They decline only when both N and T become large. Further, their

RMSEs are much larger than those of the other estimators and decrease only when both N and T

are large. This clearly demonstrates the influence of the estimated number of factors for the PC

estimator. Given that information criteria have very variable performance, this is a problematic

issue when using PC estimators but also highlights the FE estimator as an operational alternative.

On the other hand, the RMSE performance of the FE estimator improves only with N , con-

sistent with the theoretical prediction that the FE estimator is
√
N -consistent in panels with

interactive effects when factor loadings are uncorrelated. Finally, biases and RMSEs of the pooled

and mean group estimators display almost identical patterns.

13For a complete comparison we report the simulation results based on AIC1 in the Supplement.
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Table 2 presents simulation results for Experiment 1 with heterogeneous βs. The biases and

the RMSE of the four estimators are qualitatively similar to those reported in Table 1, confirming

that the small sample performance of all three estimators are still reliable, as long as factor loadings

are uncorrelated. Again, both the pooled and mean group estimators display similar performance.

Table 3 presents simulation results for Experiment 2 where factor loadings are uncorrelated but

the rank condition is violated for the homogeneous βs. The performance of the CCE estimators

tends to slightly deteriorate in small samples, but both bias and RMSE declines with N and T .

The RMSEs are higher than in the case with the full rank. This evidence is in line with Pesaran

(2006). On the other hand, the bias and the RMSE of the PC and FE estimators do not appear

to be affected by the rank deficiency.

Table 4 presents the results for Experiment 2 with heterogeneous β’s. We observe qualitatively

similar results to those reported in Table 3 with homogeneous β’s. Bias and RMSE of the CCE

estimator are larger than those in Table 2. The performance of the CCE estimator improves

slowly with N only, suggesting that the rank deficiency may slow down the performance of the

CCE estimator. Again, the performance of the PC and FE estimators is similar to the previous

cases. Finally, we find that the mean group estimator performs slightly better than the pooled

estimator in small samples.

Table 5 shows the results for Experiment 3 with correlated loadings and full rank for homoge-

neous β’s. Now, only the FE estimator is severely biased. Next, the biases of the CCE estimator

are not negligible for the small N , but its performance improves sharply with N , a consistent

finding with Westerlund and Urbain (2013), who note that ’the problem with correlated loadings

goes away if the rank condition is satisfied’. The overall performance of the PC estimator is qual-

itatively similar to the previous cases, confirming that it is still consistent with both N and T ,

only if the consistent information criterion is selected. We also observe the qualitatively similar

results documented in Table 6 for Experiment 3 with heterogeneous β’s.

Table 7 presents the simulation results for Experiment 4 with correlated loadings and the rank

deficiency for homogeneous βs. Both CCE and FE estimators are severely biased, confirming

our theoretical prediction that both estimators are inconsistent in the presence of correlated

factors loadings as also discussed in Sarafidis and Wansbeek (2012) and Westerlund and Urbain

(2013). On the other hand, the performance of the PC estimators are still qualitatively similar

to those presented in Table 3. In Table 8 we report the simulation results for Experiment 4 with

heterogeneous βs, which provide qualitatively similar results to those in Table 7.

Overall, our results show that, when the factor loadings are uncorrelated and the rank is full,

all the four estimators examined above show a similar and satisfactory performance, suggesting

that the FE estimator can produce reliable results even in the presence of interactive effects.

When factor loadings are correlated, however, the FE estimator becomes severely biased and the

performance of the CCE estimator tends to worsen. Only under the full rank condition, the
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performance of the CCE improves with N . The performance of the bias-corrected PC estimator

is qualitatively similar across all four experiments.

However, there is an important caveat. The (estimated) number of factors can make a con-

siderable difference in the performance of the PC estimator and this issue needs to be handled

carefully, in practice. Crucially, previous literature does not provide clear evidence on what is the

best course of action to choose the number of factors. In this regard, we propose a pretest estima-

tor which is constructed as follows. The pretest estimator, denoted β̂pretest, selects either the FE

or the PC estimator depending on the Hausman-type test results. To be more specific, we first

evaluate the HNON and HHACstatistics. If the null hypothesis of uncorrelated factor loadings is

not rejected, then we select β̂pretest = β̂FEwhile, if the null is rejected, we set β̂pretest = β̂PCBai

or β̂PCHNY . In the Online Supplement we have examined the finite sample performance of this

pretest estimator under the same four experiments considered above. Its overall performance of

is satisfactory in terms of bias and RMSE, irrespective of whether factor loadings are correlated

or not. This suggests that such an estimator has considerable potential as it alleviates the issue

of selecting the number of factors, especially in the case where factor loadings are found to be

uncorrelated.

4.4 The performance of the Hausman-type statistic

In this section we examine the small sample performance of the H test statistics under the

above four experiments. To construct the H statistic, we consider the difference between the FE

estimator, βFE and the bias corrected PC estimators, denoted βPCBai and βPCHNY , standardised

respectively by both versions of robust variance estimator, denoted NON and HAC.14

We examine size and the power of the H statistic, but we also report the coverage rates for

the three estimators. We consider the cases with homogeneous βi = β, and with heterogeneous

βi = β + ηi and ηi ∼ N(0, 0.04). Further, we consider serially correlated errors given by

εit = ρεεi,t−1 + vεit and uit = ρuui,t−1 + vuit with ρε = ρu = 0 or 0.5.

Hence, we examine the following two cases:15

Case 1: Homogeneous β’s and no serial correlation; see Tables 9 and 10 for HNON and HHAC

test results.

Case 2: Heterogeneous β’s and serial correlation; see Tables 11 and 12 for HNON and HHAC

test results.

Overall, the test performance reported in Tables (9)-(12), displays qualitatively satisfactory

and similar results in terms of the empirical size and power of the H statistics. This confirms

14 In what follows, we apply the bias corrected PC estimators using the ICp1 criterion. We have also investigated
the performance of the H statistics using the uncorrected PC estimators, and obtained qualitatively similar results.
15We have also considered the cases with homogeneous β’s and serial correlation and with heterogeneous β’s and

no serial correlation, and obtained qualitatively similar results, which are reported in the online supplement.
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that all the estimators are consistent under the null for both homogeneous and heterogeneous βs.

Furthermore, the satisfactory coverage rates revealed by the three estimators demonstrate that

both nonparametric and HAC variance estimators are robust to serial correlation as well as the

slope heterogeneity.

In Experiments 1 and 2, the size of both H(NON) and H(HAC) tests approach the nominal

level (0.05) in most cases as the sample size rises. The power of the H test is always one under

Experiments 3 and 4. In particular, when factor loadings are uncorrelated, βFE is shown to be

consistent and its coverage rate reaches the nominal 95% in Experiments 1 and 2, irrespective

of the rank condition. In Experiments 3 and 4 when loadings are correlated, however, βFE is

significantly biased and displays a zero coverage rate. The coverage rates of both bias-corrected

PC estimators tend to 95% under all four experiments.16

Finally, following Goncalves and Perron (2014), we have also developed a parametric boot-

strap test statistic. We find that the simulation results for the bootstrap-based statistics are

qualitatively similar to those for the asymptotic counterparts. See the Online Supplement for

details.

5 Empirical Applications

In this section, we aim to investigate the empirical relevance of the factor loadings correlation

by applying our proposed statistics, HNON and HHAC defined in (27), (28) to three empirical

questions and seven different datasets, which have been considered in existing literature. The

details of the data definitions and the empirical specifications are provided in Appendix 8.

The Cobb-Douglas production function In the first dataset comprising the four different

groups, namely the OECD members,17 the EU27 countries, the 20 Italian regions and the 48

States in the U.S., we first estimate a production function by the FE and PC estimators and then

evaluate our proposed test for the validity of the factor loadings correlation. Following M Solow

(1956) in the economic growth literature, we employ the classic Cobb-Douglas specification. For

OECD and EU27, the output is measured by the per capita GDP while the regressor is the

capital-labour ratio. For the Italian regions, output is measured by per capita value added and

in the fourth application for the US, the output is measured by per capita gross State product

with the same regressor.

16We have also examined the coverage rates for both estimators using the analytic variance estimators described
in Bai (2009, Section 9). We find that, when errors are serially correlated and conditionally heteroscedastic and/or
β’s are heterogenous, coverage rates are inconsistent for the FE estimator and they are mostly well below the
nominal level for the PC estimator. The latter evidence is also reported in Chudik, Pesaran, and Tosetti (2011) and
Sarafidis and Wansbeek (2012). This clearly demonstrates an importance of using the robust variance estimators
for a reliable inference.
17The same OECD sample has been used in Mastromarco, Serlenga, and Shin (2016).
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The Gravity model of bilateral trade flows Next, we consider the estimation of the gravity

model of the bilateral trade flows for the two groups of country pairs. The first comprises the

EU14 countries and the second the EU14 plus four OECD countries. In both cases, the data

covers the period from 1960 to 2008. Here, we follow Serlenga and Shin (2007) and estimate

the gravity panel data regression, in which the bilateral trade flow is set as a function of GDP,

countries’similarity, relative factor endowment, the real exchange rate as well as the trade union

and common currency dummies.

The gasoline demand function The final application aims at estimating the price and income

elasticities of the gasoline demand. In particular, we focus on estimating the demand function for

gasoline using the data from Liu (2014), which contains the quarterly data for the 50 States in

the U.S. over the period 1994 to 2008.

In Table (13), we present the estimation and test results. We also report the results for the

popular CD test proposed by Pesaran (2015), which tests the null of no (weak) CSD against the

alternative of strong CSD, and the Hausman test proposed by Bai (2009), denoted HBai, which

tests the null of additive-effects against the alternative of interactive-effects. Not surprisingly, we

find that the CD test strongly rejects the null hypothesis for all the dataset, providing pervasive

evidence in favor of the existence of strong CSD. Then, the most empirical studies would simply

discard the two way FE estimator, and adopt either the CCE estimator or the PC estimator. As

highlighted in Section 2, however, the rejection of CD test does not imply that the FE estimator

is always biased even in cross-sectionally correlated panels. On the contrary, the HBai test never

rejects the null hypothesis of additive-effects model even though the difference between the FE

and PC estimates is quite substantial, confirming that the HBai test has no power if the factor

loadings are uncorrelated even under the alternative model with interactive effects.

Next, turning to the slope estimates provided by both FE and PC estimators, we find that

they are mostly significant. Further, their magnitudes and signs are relatively similar each other,

and consistent with theoretical prediction, only with a few exceptions, say the gravity model of

international trade.18 These casual observations are formally confirmed by the H-test results,

showing that the null of uncorrelated factor loadings is not rejected in five out of seven cases

considered.

These findings suggest that if the factor loadings are found be uncorrelated, then the standard

FE estimation can still produce the simple consistent estimator even in the presence of unobserved

interactive effects, which also turns out to be more robust as it avoids the complex issue of selecting

the correct number of unobserved factors, which would significantly affect both CCE and PC

estimators.
18Notice that the FE estimation tends to produce substantially large coeffi cient on GDP, which has been widely

reported in the literature.
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6 Conclusions

Over the last decades a large strand of the literature on panel data has focused on analysing the

cross—section dependence, based on the (unobserved) factors or interactive effects models, which

are implicitly understood to bias conventional estimators such as the two-way FE estimator, due

to the potential endogeneity arising from the correlation between regressors and factors.

Two main approaches have been advocated to deal with this issue: the Pesaran (2006) CCE

estimator and the Bai (2009) PC estimator. In this paper we have shown that the interactive

effects model can be encompassed by the standard error components model under a mild restriction

on the factor loadings. In particular, when the factor loadings are uncorrelated in panels with

interactive effects, the two-way FE is estimator still consistent. By avoiding the nontrivial issue

of applying the complex bias-corrections in conjunction with the reliable information criteria

correctly selecting the number of unobserved factors, the FE estimator would provide a simple

and well-established estimation strategy in practice.

Via Monte Carlo studies, we find that the FE and CCE estimators display a similar and

satisfactory performance when factor loadings satisfy an uncorrelatedness condition. As expected,

the performance of both CCE and FE estimators worsens significantly under correlated factor

loadings whilst the performance of the PC estimator is not unduly affected.

This suggests that the presence of correlated factor loadings emerges as an influential but

under-appreciated feature of the panel data model with interactive effects. As the main contri-

bution of this paper, we propose a test for the validity of correlated factor loadings, based on the

Hausman principle. Further Monte Carlo simulation results confirm that the size and the power

of the proposed test for correlated factor loadings is quite satisfactory even in small samples.

Finally, we consider a number of panel dataset to explore empirical evidence related to factor

loadings restrictions. We find strong evidence in favor of uncorrelated factor loadings, suggesting

that the standard two-way FE estimator should be an important part of the toolkit of applied

researchers, worried about the presence of cross sectional dependence in their dataset.
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7 Appendix: Proofs

7.1 Preliminary Lemmata

We first provide two important Lemmas that extend the Law of large Numbers and Central Limit

Theorem to cover the martingale difference case for the panel data.

Lemma 4 Let Wi,T and µi,T for i = 1, ..., N and T = 1, ..., T, be arrays of matrices of random

variables and constants such thatWi,T−µi,T is a martingale difference array where supi,T E ‖Wi,T ‖1+δ <
∞ for some δ > 0. Then, as (N,T )→j ∞,

N−1
N∑
i=1

Wi,T − µi,T →p 0.

Proof. Note that by Theorem 12.11 of Davidson (1994), if supi,T E ‖Wi,T ‖1+δ < ∞, then
limM→∞ supi,T E

(
‖Wi,T − µi,T ‖ I{‖Wi,T−µi,T‖>M}

)
= 0, which is a generalisation of uniform in-

tegrability to arrays. Then, the result follows immediately by Corollary 19.9 of Davidson (1994).

Lemma 5 Let wi,T and µi,T , for i = 1, ..., N and T = 1, ..., T, be arrays of vectors of random vari-

ables and constants such that wi,T−µi,T is a martingale difference array where E
[
(wi,T − µi,T ) (wi,T − µi,T )′

]
=

Σi,T , and supi,T E ‖wiT ‖2+δ < ∞ for some δ > 0. Assume that Σ = limN,T→∞N
−1∑N

i=1 Σi,T is

positive definite and supN,T N
−1∑N

i=1 Σi,T <∞. Then, as (N,T )→j ∞,

N−1
N∑
i=1

wiT − µiT →d N(0,Σ). (33)

Proof. By Theorem 12.11 of Davidson (1994), if supi,T E ‖wi,T ‖2+δ < ∞, we then obtain the
uniform integrability condition,

lim
M→∞

sup
i,T

E
(
‖Wi,T − µi,T ‖ I{‖Wi,T−µi,T‖>M}

)
= 0.

Together with supN,T N
−1∑N

i=1 Σi,T < ∞, this implies that the Lindeberg condition holds by
Theorem 23.18 of Davidson (1994). Then, by Theorem 23.16 of Davidson (1994), it follows that

max
i,T

N−1 (wiT − µiT )→p 0. (34)

Finally, together with supi,T E ‖wi,T ‖2+δ < ∞, (34) implies (33) by Theorem 24.3 of Davidson

(1994).

Next, we provide the proofs for Theorems 1, 2 and 3.
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7.2 Proof of Theorem 1

Consider first the homogeneous case with βi = β for all i in which case we have:

β̂FE − β =

(
N∑
i=1

Ẋ
′
iẊi

)−1 N∑
i=1

Ẋ
′
iu̇i =

(
N∑
i=1

Ẋ
′
iẊi

)−1 N∑
i=1

Ẋ
′
i

(
F̃ γ̃i + ε̇i

)

=

(
N∑
i=1

Ẋ
′
iẊi

)−1 N∑
i=1

Ẋ
′
i

(
F̃ γ̃i + εi

)
+ op (1) , (35)

where we use

ε̇it = εit − εi. − ε.t + ε.. = εit + op (1) .

Next, in the heterogeneous case with βi = β + ηi, we have

β̂FE − β =

(
N∑
i=1

Ẋ
′
iẊi

)−1 N∑
i=1

Ẋ
′
i

(
Ẋiηi + F̃ γ̃i + ε̇i

)
(36)

=

(
N∑
i=1

Ẋ
′
iẊi

)−1 N∑
i=1

Ẋ
′
i

(
Ẋiηi + F̃ γ̃i + ε̇i

)
+ op (1) .

Noting that xit = Γ′if t + uit, and using Lemma 1, it is easily seen that as (N,T )→j ∞,(
1

N

N∑
i=1

Ẋ
′
iẊi

T

)−1
→p lim

N,T→∞

1

N

N∑
i=1

E

(
Ẋ
′
iẊi

T

)
= ΨFE ≡ Γ̄Σf Γ̄

′
+ Σu,

where Γ̄ = E (Γi). Next, by the independence of γ̃i and ηi each other and from Ẋi and F̃ across

i, and using the fact that E (γ̃i) = E(ηi) = 0, it follows that Ẋ
′
i

(
F̃ γ̃i + Ẋiηi

)
is a martingale

difference sequence for any ordering across i. To see this, notice that for any ordering over i, we

have:

E
[
Ẋ
′
i

(
Ẋiηi + F̃ γ̃i + εi

)
|Ẋj , F̃ , γ̃j ,ηj

]
= E

[
Ẋ
′
iẊiηi|Ẋj , F̃ , γ̃j ,ηj

]
+ E

[
Ẋ
′
iF̃ γ̃i|Ẋj , F̃ , γ̃j ,ηj

]
+ E

[
Ẋ
′
iεi|Ẋj , F̃ , γ̃j ,ηj

]
= E

[
Ẋ
′
iF̃ |Ẋj , F̃ , γ̃j ,ηj

]
E
[
γ̃i|Ẋj , F̃ , γ̃j ,ηj

]
+ E

[
Ẋ
′
iẊi|Ẋj , F̃ , γ̃j ,ηj

]
E
[
ηi|Ẋj , F̃ , γ̃j ,ηj

]
+ E

[
Ẋi|Ẋj , F̃ , γ̃j ,ηj

]
E
[
εi|Ẋj , F̃ , γ̃j ,ηj

]
for j 6= i

But, since

E
[
γ̃i|Ẋj , F̃ , γ̃j ,ηj

]
= E

[
ηi|Ẋj , F̃ , γ̃j ,ηj

]
= E

[
εi|Ẋj , F̃ , γ̃j ,ηj

]
= 0, j 6= i

hence

E
[
Ẋ
′
i

(
Ẋiηi + F̃ γ̃i + εi

)
|Ẋj , F̃ , γ̃j ,ηj

]
= 0, j 6= i
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which proves the martingale difference property. Notice in our proofs that we repeatedly use the

simple fact that the product of a stochastic process with a second process, that is independent

over its index as well as of the first process, is a martingale difference process. Next, by Lemma

2, we find that
{
Ẋ
′
iεi√
T

}N
i=1

,
{
Ẋ
′
iF̃ γ̃i
T

}N
i=1

and
{
Ẋ
′
i(F̃ γ̃i+Ẋiηi)

T

}N
i=1

are martingale difference se-

ries. Notice that
(∑N

i=1 Ẋ
′
iẊi

)−1∑N
i=1 Ẋ

′
iεi = Op

(
1√
NT

)
, is of the smaller probability order of

magnitude than the other two terms in the RHS of (35). Therefore, it follows as (N,T )→j ∞,

1√
N

N∑
i=1

Ẋ
′
iF̃ γ̃i
T

→d N (0,R1,FE)

and

1√
N

N∑
i=1

Ẋ
′
i

(
F̃ γ̃i + Ẋiηi

)
T

→d N (0,R1,FE +R2,FE) .

where R1,FE and R2,FE are defined in (13) and (14). This proves (12) in Theorem 1. We will

prove (15) in the proof of Theorem 3.

7.3 Proof of Theorem 2

By Theorems 4 and 5 in Hayakawa, Nagata, and Yamagata (2018), we have for βi = β:

β̂PC − β =

(
N∑
i=1

V ′iV i

)−1 N∑
i=1

V ′iεi +RNT ,

while for βi = β + ηi,

β̂PC− β =

(
N∑
i=1

V ′iV i

)−1 N∑
i=1

V ′iV iηi +RNT ,

where RNT denotes terms of the lower order of probability than the leading terms in the RHS

of the above equations. Note that
∑N

i=1 V
′
iεi = Op

(√
NT

)
and

∑N
i=1 V

′
iV iηi = Op

(√
NT

)
.

Using Lemmas 1 and 2, it follows that as (N,T )→j ∞,(
1

N

N∑
i=1

V ′iV i

T

)−1
→p lim

N,T→∞

1

N

N∑
i=1

E

(
V ′iV i

T

)
= ΨPC

1√
N

N∑
i=1

V ′iεi√
T
→d N (0,R1,PC)

and
1√
N

N∑
i=1

V ′iV iηi
T

→d N (0,R2,PC)

where R1,PC and R2,PC are defined in (23) and (25). These prove (22) and (24). (26) follows by

the proof of Theorem 3.
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7.4 Proof of Theorem 3

Given Theorems 1 and 2, it suffi ces to derive the equivalence and consistency of the two robust

covariance estimators for β̂FE and β̂PC , which are given by (10), (11), (20) and (21), respectively.

Rewrite them compactly as

V NON
(
β̂FE

)
= Ψ̂−1FER̂

NON
FE Ψ̂−1FE and V

HAC
(
β̂FE

)
= Ψ̂−1FER̂

HAC
FE Ψ̂−1FE

and

V NON
(
β̂PC

)
= Ψ̂−1PCR̂

NON
PC Ψ̂−1PC and V

HAC
(
β̂PC

)
= Ψ̂−1PCR̂

HAC
PC Ψ̂−1PC

where

Ψ̂FE =
N∑
i=1

Ẋ
′
iẊi, Ψ̂PC =

N∑
i=1

X̂
′
iX̂i =

N∑
i=1

X ′iM F̂Xi

R̂
NON
FE =

N∑
i

(
Ẋ
′
iẊi

)(
β̂FE,i − β̂FE

)(
β̂FE,i − β̂FE

)′ (
Ẋ
′
iẊi

)
R̂
NON
PC =

N∑
i

X̂
′
iX̂i

(
β̂PC,i − β̂PC

)(
β̂PC,i − β̂PC

)′
X̂
′
iX̂i

R̂
HAC
FE =

N∑
i

Ẋ
′
iûFE,iû

′
FE,iẊi, R̂

HAC
PC =

N∑
i

X̂
′
iûPC,iû

′
PC,iX̂i

Finally, we define

Ĉ
NON

(
β̂FE , β̂PC

)
= Ψ̂−1FER̂

NON
FE,PCΨ̂−1PC and Ĉ

HAC
(
β̂FE , β̂PC

)
= Ψ̂−1FER̂

HAC
FE,PCΨ̂−1PC

where

R̂
NON
FE,PC =

N∑
i

Ẋ
′
iẊi

(
β̂FE,i − β̂FE

)(
β̂PC,i − β̂PC

)′
X̂
′
iX̂i,

R̂
HAC
FE,PC =

N∑
i

Ẋ
′
iûFE,iû

′
PC,iX̂i

To establish that the two covariance estimators are (asymptotically) equivalent, we need to show

that

R̂
NON
FE = R̂

HAC
FE +RNT (37)

R̂
NON
PC = R̂

HAC
PC +RNT (38)

R̂
NON
FE,PC = R̂

HAC
FE,PC +RNT (39)

where RNT denotes terms of the lower order of probability than the leading terms in the RHS

of the above equations. We focus on the PC estimator in (38). First, consider R̂
HAC
PC and notice

that

X̂
′
iûPC,i = X̂

′
i

(
uPC,i + X̂i

(
β̂PC − β

))
.
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By Theorem 6 of Hayakawa, Nagata, and Yamagata (2018), it follows that, as limN,T→∞
T
N →

c ∈ (0,∆] with ∆ <∞,
N∑
i=1

X̂
′

iûPC,iû
′
PC,iX̂i =

N∑
i=1

V ′iuPC,iu
′
PC,iV i +RNT

Using uPC,i = Xiηi + εi, we have

R̂
HAC
FE =

N∑
i=1

V ′iεiε
′
iV i +

N∑
i=1

V ′iV iηiη
′
iV
′
iV i +RNT . (40)

Next, it is easily seen that

β̂PC,i − β =
(
X̂
′
iX̂i

)−1
X̂
′
iεi + ηi

and

β̂PC − β =
1

N

N∑
i=1

[(
X̂
′
iX̂i

)−1
X̂
′
iεi + ηi

]
Then,

X̂
′
iX̂i

(
β̂PC,i − β̂PC

)
= X̂

′
iX̂i

(
β̂PC,i − βi + βi − β + β − β̂PC

)
= X̂

′
iX̂i

(
β̂PC,i − βi

)
+ X̂

′
iX̂iηi + X̂

′
iX̂i

(
β − β̂PC

)
= X̂

′
iεi + X̂

′
iX̂iηi + X̂

′
iX̂i

(
β − β̂PC

)
By Theorem 6 of Hayakawa, Nagata, and Yamagata (2018), we obtain:

R̂
NON
PC =

N∑
i=1

V ′iεiε
′
iV i +

N∑
i=1

V ′iV iηiη
′
iV
′
iV i +RN,T . (41)

This proves (38). Noticing that both V
′
iεiε

′
iV i

T −E
(
V ′iεiε

′
iV i

T

)
and V

′
iV i

T ηiη
′
i
V ′iV i

T −E
(
V ′iV i

T ηiη
′
i
V ′iV i

T

)
are iid and martingale difference processes over i and by Lemma 1, we have:

1

N

N∑
i=1

V ′iεiε
′
iV i

T
→p lim

N,T→∞

1

N

N∑
i=1

E

(
V ′iεiε

′
iV i

T

)
and

1

N

N∑
i=1

V ′iV i

T
ηiη

′
i

V ′iV i

T
→p lim

NT,→∞

1

N

N∑
i=1

E

(
V ′iV i

T
ηiη

′
i

V ′iV i

T

)
This provides consistency of both variance estimators. Along similar lines of derivation, it is

straightforward to prove (37) and (39) Using the above results, it readily follows that(
β̂FE − β̂PC

)′ (
V̂
NON

)−1 (
β̂FE − β̂PC

)
∼ χ2k

and (
β̂FE − β̂PC

)′ (
V̂
HAC

)−1 (
β̂FE − β̂PC

)
∼ χ2k

irrespective of whether βi = β or βi = β + ηi, where V̂
NON

and V̂
HAC

are defined in (29) and

(30), respectively.
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8 Appendix: The Data and Empirical Specifications

We describe the empirical specifications and the data in details. For the production function, we

estimate the following panel data regression:

ln

(
Y

L

)
it

= β ln

(
K

L

)
it

+ eit, eit = αi + γ ′if t + εit (42)

The first group consists of 26 OECD countries; Australia, Austria, Belgium, Canada, Chile,

Denmark, Finland, France, Germany, Greece, Hong Kong, Ireland, Israel, Italy, Japan, Korea,

Mexico, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Turkey, the U.K. and

the U.S. The data is collected from PWT 7.0 and covers the period 1970-2010. Y is GDP measured

in million U.S. $ at the 2005 price, K the capital measured in millions U.S. $, constructed using

the perpetual inventory method (PIM), and L the labour measured as the total employment in

thousands. The second group contains the EU27 countries; Austria, Belgium, Bulgaria, Cyprus,

Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy,

Latvia, Lithuania, Luxembourg, Malta, the Netherlands, Poland, Portugal, Romania, Slovakia,

Slovenia, Spain, Sweden, the U.K. The data are extracted from PWT 9.0 over the period 1990-2015

and the definition of the variables, Y , K and L is the same as above. The third group includes 20

Italian regions over the period 1995-2016; Piemonte, Valle d’Aosta, Liguria, Lombardia, Trentino

Alto Adige, Veneto, Friuli-Venezia Giulia, Emilia-Romagna, Toscana, Umbria, Marche, Lazio,

Abruzzo, Molise, Campania, Puglia, Basilicata, Calabria, Sicilia and Sardegna. Due to the data

availability, we construct Y by the value added measured in million Euros at the 2010 price, L by

the total employment in thousands, and K by Gross Fixed Capital Formation in millions Euros.

The data covers the period 1995 to 2000, gathered from ISTAT. The fourth group comprises 48

U.S. states. The data are taken from Munnell (1990), covering the period, 1970-1986. In this

case, Y is the per capita gross state product, K is the private capital computed by apportioning

Bureau of Economic Analysis (BEA) national stock estimates, and L is the number of employers

in thousands in non-agricultural payrolls.

Next, we consider the gravity model specifications for the bilateral trade flows given by

ln (tradeit) = βgdp ln (gdpit) + βrer ln (rerit) + βsim ln (simit) + βrlf ln (rlfit) (43)

+βceeceeit + βeuroeuroit + eit, eit = αi + γ ′if t + εit (44)

Here, tradeit is the sum of bilateral import flows (importodt) and export flows (exp ortodt) mea-

sured in million U.S. dollars at the 2000 price with o and d denoting the origin and the destination

country, gdpit is the sum of gdpot and gdpdt both of which are measured as the gross domestic

product at the 2000 dollar price, rerit = nerodt× xpiUS is the real exchange rate measured in the
2000 dollar price, where nerhft is the bilateral nominal exchange rate normalised in terms of the
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U.S. $, sim is a measure of similarity in size constructed by

simodt =

[
1−

(
gdpot

gdpot + gdpdt

)2
−
(

gdpdt
gdpot + gdpdt

)2]

and rlfodt = |pgdpot − pgdpdt| measures countries’difference in relative factor endowment where
pgdp is per capita GDP. cee and euro represent dummies equal to one when countries of origin and

destination both belong to the European Economic Community and share the euro as common

currency, respectively. The data are collected from the IMF Direction of Trade Statistics, and

covers the period, 1960-2008. We consider the two groups: the first contains 91 country-pairs

amongst the EU14 member countries (Austria, Belgium-Luxemburg, Denmark, Finland, France,

Germany, Greece, Ireland, Italy, Netherlands, Portugal, Spain, Sweden, United Kingdom) whereas

the second group adds the four OECD countries, Australia, Canada, Japan and the U.S., and

make a total of 190 pairs.

Finally, we estimate the gasoline demand function by

ln (qit) = βp ln (pit) + βinc ln (incit) + eit, eit = αi + γ ′if t + εit (45)

where gasoline consumption, qit, is approximated as monthly sales volumes of motor gasoline, per

capita per day; pit is the after tax gasoline prices computed by adding the state/federal tax rates

to the motor gasoline sales to end user price and qit represent the quarterly personal disposable

income. Prices, income, and tax rates are converted to constant 2005 dollars using GDP implicit

price deflators. The source of data is Liu (2014).

Empirical results obtained by uncorrected PC estimator Here, for a comparison, we

also report the estimation results obtained using the uncorrected PC estimator.

Empirical results: Uncorrected PC estimates.
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βPCBai βPCHNY
Production
OECD β k

l
0.632 0.594

EU27 β k
l

0.688 0.552

ITA β k
l

0.355 0.310

US β k
l

0.102 0.149

Trade
EU14 βgdp 1.808 1.959
p = 6 βrer -0.043 0.024

βsim 1.230 1.403
βrlf 0.014 0.079
βcee 0.369 0.354
βemu 0.179 0.113

EU14+OECD βgdp 1.764 1.618
p = 6 βrer 0.023 -0.043

βsim 0.606 0.559
βrlf 0.004 0.005
βcee 0.255 0.236
βemu 0.100 0.046

Gasoline demand
βp -0.101 -1.121
βi 0.391 0.400

Notes: βPCBai denotes the PC estimator as in Bai (2009); βPCHNY denotes the PC estimator as in Hayakawa,

Nagata, and Yamagata (2018). Four factors are extracted in the gravity model application EU14 while two factors

are extracted in all other cases.

9 Appendix: The Bias Corrected PC Estimator

The bias corrected estimator proposed by Hayakawa, Nagata, and Yamagata (2018) is given by

β̂PCHNY = β̂PC −
1

N
ĉ

where the factors are estimated by the eigenvectors corresponding to the largest r largest eigen-

values of the T × T matrix 1
N

∑N
i=1ZiZ

′
i being Zi = (yi,Xi), and the bias correction terms are

given by

ĉ =

(
1

NT

N∑
i=1

X̂
′
iX̂i

)−1
ξ̂

where X̂i = M F̂ Xi,M F̂ = I − F̂
(
F̂
′
F̂
)−1

F̂
′
, and

ξ̂ = − 1

N

N∑
i=1

Γ̂iΥ̂
−1
N ĝ1iσ̂

2
i +

1

N

N∑
i=1

Γ̂iΥ̂
−1
N

 1

N

N∑
j=1

ĜjΩ̂EEjĜ
′
j

 Υ̂
−1
N λ̂i

− 1

N

N∑
j=1

Ω̂V EjĜ
′
jΥ̂
−1
N λ̂i
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with

Γ̂
′
i =

F̂
′
Xi

T
; Υ̂N =

1

N

N∑
i=1

ĜiĜ
′
i; Ĝi =

F̂
′
Zi

T
; ĝ1i =

F̂
′
yi
T
; σ̂2i =

û′iM F̂ ûi

T
; ûi = yi−Xi β̂PC

Ω̂EE,i =
Ê
′
iÊi

T
; Êi = M F̂Zi; λ̂i =

F̂
′
ui
T

; Ω̂V E,i =
V̂
′
iÊi

T
; V̂ i = M F̂Xi

29



Tables

Table 1: Simulation results for Experiment 1 with uncorrelated factor
loadings and the full rank for homogeneous β=1

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 0.0011 -0.0013 0.0003 -0.0007 -0.0007 0.0018 -0.0014 0.0009 -0.0009 -0.0009
30 -0.0015 0.0009 -0.0007 -0.0004 0.0003 -0.0013 0.0003 -0.0007 -0.0003 0.0005
50 -0.0001 -0.0017 0.0003 0.0009 0.0007 -0.0003 -0.0018 0.0002 0.0008 0.0007
100 -0.0011 0.0000 -0.0004 -0.0002 -0.0002 -0.0010 -0.0001 -0.0004 -0.0002 -0.0002
200 -0.0005 -0.0003 -0.0003 -0.0002 -0.0002 -0.0003 -0.0003 -0.0003 -0.0002 -0.0002

RMSE
20 0.0578 0.0473 0.0351 0.0236 0.0163 0.0612 0.0494 0.0377 0.0252 0.0171
30 0.0492 0.0374 0.0274 0.0190 0.0134 0.0501 0.0389 0.0285 0.0195 0.0140
50 0.0391 0.0301 0.0213 0.0148 0.0101 0.0387 0.0307 0.0217 0.0152 0.0103
100 0.0308 0.0213 0.0154 0.0109 0.0074 0.0295 0.0212 0.0155 0.0110 0.0075
200 0.0261 0.0161 0.0114 0.0071 0.0049 0.0239 0.0158 0.0114 0.0072 0.0050

FEP FEMG
Bias

20 0.0028 -0.0003 -0.0001 -0.0015 -0.0004 0.0039 -0.0015 0.0011 -0.0010 0.0000
30 -0.0012 -0.0028 -0.0002 -0.0011 -0.0004 0.0025 0.0001 0.0006 -0.0011 0.0000
50 0.0047 0.0019 0.0017 0.0000 0.0016 0.0032 0.0016 0.0008 -0.0005 0.0012
100 -0.0068 0.0017 -0.0007 -0.0002 -0.0016 -0.0066 0.0004 -0.0019 0.0003 -0.0004
200 -0.0002 -0.0010 -0.0007 -0.0021 -0.0001 -0.0009 -0.0006 -0.0004 -0.0018 -0.0003

RMSE
20 0.1224 0.0906 0.0752 0.0507 0.0355 0.1167 0.0914 0.0730 0.0509 0.0355
30 0.1124 0.0901 0.0723 0.0493 0.0345 0.1066 0.0868 0.0687 0.0486 0.0333
50 0.1109 0.0914 0.0713 0.0486 0.0342 0.1064 0.0881 0.0677 0.0452 0.0327
100 0.1111 0.0908 0.0681 0.0509 0.0325 0.1010 0.0848 0.0639 0.0474 0.0316
200 0.1097 0.0849 0.0694 0.0470 0.0350 0.1012 0.0789 0.0639 0.0439 0.0330

PCP Bai
Bias

20 -0.0041 -0.0021 0.0002 -0.0006 0.0005
30 0.0010 0.0007 0.0009 0.0009 -0.0008
50 0.0016 0.0003 -0.0009 0.0009 0.0000
100 0.0001 0.0004 0.0000 0.0001 -0.0004
200 -0.0002 0.0005 0.0001 0.0001 -0.0002

RMSE
20 0.0595 0.0477 0.0349 0.0244 0.0171
30 0.0476 0.0369 0.0289 0.0199 0.0140
50 0.0371 0.0278 0.0209 0.0145 0.0102
100 0.0250 0.0201 0.0147 0.0104 0.0070
200 0.0175 0.0137 0.0104 0.0074 0.0051

PCP HNY PCMG HNY
Bias

20 -0.0027 -0.0017 0.0005 -0.0002 0.0006 -0.0018 -0.0012 0.0003 -0.0005 0.0005
30 0.0011 0.0014 0.0008 0.0010 -0.0007 0.0014 0.0019 0.0007 0.0011 -0.0006
50 0.0004 0.0008 -0.0013 0.0007 0.0000 0.0003 0.0005 -0.0013 0.0006 0.0001
100 0.0005 0.0002 0.0000 0.0000 -0.0004 0.0006 0.0001 0.0000 0.0000 -0.0004
200 -0.0002 0.0002 0.0000 0.0001 -0.0002 -0.0003 0.0002 0.0000 0.0001 -0.0002

RMSE
20 0.0604 0.0482 0.0355 0.0242 0.0169 0.0638 0.0511 0.0381 0.0255 0.0176
30 0.0477 0.0377 0.0287 0.0199 0.0139 0.0498 0.0394 0.0295 0.0206 0.0144
50 0.0362 0.0280 0.0213 0.0146 0.0101 0.0376 0.0283 0.0219 0.0148 0.0103
100 0.0254 0.0203 0.0149 0.0103 0.0069 0.0258 0.0204 0.0151 0.0104 0.0070
200 0.0179 0.0135 0.0106 0.0075 0.0052 0.0181 0.0136 0.0107 0.0075 0.0052

Notes: CCE and CCEMG are the pooled and mean group common correlated estimators by Pesaran (2006); FEP

and FEMG denote the pooled and mean group two-way fixed effects estimators. PCP Bai is the iterative pooled

principal component estimator by Bai (2009) whilst PCP HNY and PCMG HNY stand for the pooled and mean

group principal component estimators proposed by Hayakawa, Nagata, and Yamagata (2018) The PC estimators

are bias-corrected and evaluated using the ICp1 criterion by Bai and Ng (2002).
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Table 2: Simulation results for Experiment 1 with uncorrelated fac-
tor loadings and the full rank for heterogeneous βi = 1 + ηi, ηi ∼
iidN(0, 0.04)

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 -0.0038 -0.0013 0.0015 -0.0001 -0.0003 -0.0041 -0.0026 0.0023 0.0000 -0.0002
30 -0.0037 0.0019 0.0021 -0.0003 -0.0007 -0.0027 0.0017 0.0017 -0.0008 -0.0008
50 0.0010 0.0008 0.0001 0.0014 0.0007 0.0006 0.0016 0.0002 0.0015 0.0006
100 0.0019 0.0002 -0.0008 -0.0004 0.0005 0.0015 0.0003 -0.0007 -0.0004 0.0005
200 -0.0011 0.0008 -0.0007 -0.0003 0.0003 -0.0006 0.0007 -0.0006 -0.0005 0.0003

RMSE
20 0.0730 0.0609 0.0444 0.0319 0.0229 0.0741 0.0613 0.0454 0.0322 0.0234
30 0.0670 0.0546 0.0407 0.0281 0.0195 0.0660 0.0546 0.0410 0.0282 0.0194
50 0.0598 0.0461 0.0347 0.0255 0.0181 0.0582 0.0458 0.0343 0.0254 0.0179
100 0.0538 0.0416 0.0311 0.0224 0.0163 0.0525 0.0407 0.0312 0.0222 0.0162
200 0.0545 0.0401 0.0294 0.0213 0.0151 0.0529 0.0397 0.0293 0.0212 0.0150

FEP FEMG
Bias

20 0.0008 0.0042 0.0006 0.0012 -0.0004 -0.0012 0.0002 -0.0004 0.0014 -0.0016
30 -0.0073 -0.0022 0.0010 0.0009 0.0004 -0.0017 -0.0023 0.0034 -0.0007 0.0004
50 -0.0011 -0.0001 -0.0017 0.0006 0.0029 0.0022 0.0053 -0.0002 0.0003 0.0031
100 0.0052 -0.0001 -0.0021 -0.0004 0.0015 0.0073 0.0010 -0.0017 -0.0007 0.0001
200 -0.0037 0.0010 0.0011 0.0029 -0.0003 -0.0014 0.0009 -0.0001 0.0022 0.0005

RMSE
20 0.1285 0.1041 0.0849 0.0578 0.0418 0.1230 0.1035 0.0808 0.0558 0.0398
30 0.1253 0.0995 0.0816 0.0579 0.0405 0.1198 0.0992 0.0760 0.0538 0.0387
50 0.1251 0.1001 0.0798 0.0559 0.0390 0.1152 0.0938 0.0749 0.0530 0.0369
100 0.1230 0.0968 0.0790 0.0544 0.0380 0.1114 0.0887 0.0715 0.0489 0.0354
200 0.1255 0.0996 0.0778 0.0533 0.0378 0.1135 0.0913 0.0717 0.0485 0.0339

PCP Bai
Bias

20 0.0029 -0.0024 -0.0002 -0.0008 0.0000
30 0.0045 -0.0033 -0.0023 -0.0004 0.0004
50 -0.0012 0.0023 0.0002 0.0017 0.0000
100 -0.0019 -0.0018 -0.0005 -0.0008 -0.0002
200 -0.0006 0.0019 -0.0006 -0.0006 -0.0004

RMSE
20 0.0773 0.0577 0.0476 0.0327 0.0229
30 0.0685 0.0541 0.0405 0.0277 0.0193
50 0.0604 0.0469 0.0346 0.0247 0.0174
100 0.0515 0.0433 0.0320 0.0229 0.0162
200 0.0491 0.0388 0.0306 0.0210 0.0146

PCP HNY PCMG HNY
Bias

20 0.0016 -0.0018 0.0002 -0.0005 -0.0001 0.0000 -0.0008 0.0004 -0.0008 -0.0005
30 0.0042 -0.0023 -0.0020 -0.0004 0.0004 0.0028 -0.0019 -0.0020 0.0001 0.0002
50 -0.0011 0.0021 0.0002 0.0015 0.0001 -0.0008 0.0024 0.0005 0.0015 0.0002
100 -0.0020 -0.0013 -0.0007 -0.0008 -0.0002 -0.0019 -0.0010 -0.0005 -0.0010 -0.0003
200 -0.0002 0.0021 -0.0005 -0.0007 -0.0004 -0.0004 0.0021 -0.0005 -0.0007 -0.0004

RMSE
20 0.0767 0.0583 0.0468 0.0327 0.0229 0.0779 0.0599 0.0478 0.0332 0.0231
30 0.0675 0.0548 0.0402 0.0280 0.0194 0.0671 0.0548 0.0403 0.0283 0.0195
50 0.0599 0.0468 0.0346 0.0248 0.0173 0.0591 0.0467 0.0346 0.0244 0.0172
100 0.0518 0.0432 0.0320 0.0228 0.0162 0.0512 0.0428 0.0320 0.0229 0.0161
200 0.0487 0.0390 0.0308 0.0209 0.0146 0.0487 0.0388 0.0307 0.0208 0.0145

Notes: See notes to Table 1.
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Table 3: Simulation results for Experiment 2 with uncorrelated factor
loadings and the rank deficiency for homogeneous β=1

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 -0.0019 0.0014 0.0049 0.0016 0.0004 0.0010 0.0021 0.0033 0.0002 0.0010
30 0.0015 -0.0012 0.0010 -0.0008 -0.0004 0.0023 -0.0010 0.0012 -0.0001 -0.0004
50 0.0019 0.0019 0.0018 0.0012 0.0012 0.0014 0.0007 0.0002 -0.0002 0.0010
100 0.0059 0.0032 0.0008 0.0006 0.0011 0.0033 0.0034 0.0015 0.0010 0.0011
200 0.0052 0.0012 -0.0011 -0.0001 0.0005 0.0039 0.0015 0.0002 0.0001 0.0001

RMSE
20 0.1067 0.0855 0.0612 0.0457 0.0327 0.0982 0.0796 0.0571 0.0417 0.0297
30 0.0986 0.0809 0.0619 0.0419 0.0322 0.0861 0.0700 0.0532 0.0379 0.0284
50 0.0967 0.0766 0.0574 0.0420 0.0288 0.0820 0.0623 0.0482 0.0356 0.0243
100 0.0939 0.0791 0.0545 0.0421 0.0293 0.0768 0.0653 0.0445 0.0340 0.0235
200 0.0902 0.0722 0.0583 0.0383 0.0295 0.0725 0.0559 0.0460 0.0314 0.0233

FEP FEMG
Bias

20 -0.0032 -0.0005 0.0018 0.0016 0.0009 0.0010 0.0016 0.0020 0.0018 0.0013
30 -0.0006 -0.0005 -0.0001 -0.0005 -0.0002 -0.0003 -0.0006 0.0009 -0.0006 0.0000
50 0.0003 -0.0020 0.0020 0.0014 0.0006 0.0001 -0.0021 0.0015 0.0005 0.0011
100 -0.0002 0.0049 -0.0005 0.0006 0.0001 -0.0007 0.0056 0.0002 0.0016 0.0003
200 0.0069 0.0053 -0.0014 -0.0023 0.0007 0.0053 0.0047 -0.0010 -0.0019 0.0000

RMSE
20 0.1235 0.0943 0.0737 0.0518 0.0366 0.1237 0.0926 0.0728 0.0505 0.0362
30 0.1169 0.0954 0.0715 0.0513 0.0355 0.1124 0.0888 0.0663 0.0500 0.0346
50 0.1160 0.0883 0.0674 0.0504 0.0331 0.1065 0.0833 0.0657 0.0488 0.0318
100 0.1112 0.0939 0.0679 0.0500 0.0347 0.1030 0.0866 0.0649 0.0469 0.0320
200 0.1099 0.0856 0.0700 0.0499 0.0345 0.1005 0.0806 0.0653 0.0459 0.0327

PCP Bai
Bias

20 -0.0021 -0.0026 0.0020 0.0010 -0.0005
30 -0.0009 -0.0004 -0.0006 0.0001 0.0004
50 0.0010 -0.0014 0.0001 0.0004 -0.0002
100 0.0014 0.0005 0.0007 0.0003 0.0001
200 0.0009 -0.0002 -0.0003 0.0001 0.0001

RMSE
20 0.0607 0.0464 0.0345 0.0240 0.0171
30 0.0484 0.0377 0.0289 0.0196 0.0141
50 0.0344 0.0281 0.0211 0.0153 0.0105
100 0.0263 0.0198 0.0150 0.0103 0.0073
200 0.0177 0.0133 0.0108 0.0074 0.0052

PCP HNY PCMG HNY
Bias

20 -0.0029 -0.0016 0.0020 0.0011 -0.0005 -0.0038 -0.0011 0.0021 0.0015 -0.0004
30 -0.0003 0.0002 -0.0007 0.0001 0.0005 -0.0005 0.0003 -0.0008 0.0001 0.0004
50 0.0007 -0.0010 0.0002 0.0005 -0.0002 0.0007 -0.0010 0.0000 0.0005 -0.0002
100 0.0016 0.0002 0.0006 0.0003 0.0001 0.0017 0.0003 0.0006 0.0003 0.0001
200 0.0002 -0.0002 -0.0005 0.0001 0.0001 0.0002 -0.0003 -0.0005 0.0000 0.0001

RMSE
20 0.0606 0.0468 0.0351 0.0240 0.0173 0.0641 0.0502 0.0367 0.0255 0.0185
30 0.0503 0.0382 0.0287 0.0197 0.0141 0.0525 0.0394 0.0296 0.0205 0.0147
50 0.0359 0.0279 0.0209 0.0153 0.0104 0.0370 0.0286 0.0212 0.0155 0.0107
100 0.0263 0.0197 0.0152 0.0101 0.0073 0.0266 0.0199 0.0153 0.0103 0.0074
200 0.0176 0.0132 0.0107 0.0074 0.0051 0.0176 0.0133 0.0108 0.0075 0.0051

Notes: See notes to Table 1.
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Table 4: Simulation results for Experiment 2 with uncorrelated factor
loadings and the rank deficiency for heterogeneous βi = 1 + ηi, ηi ∼
iidN(0, 0.04)

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 -0.0025 -0.0035 0.0001 -0.0015 0.0013 0.0011 -0.0054 -0.0008 -0.0012 0.0020
30 0.0052 0.0011 0.0015 -0.0015 0.0018 0.0018 0.0010 0.0013 -0.0016 0.0013
50 0.0010 0.0015 -0.0010 0.0001 0.0025 -0.0013 0.0014 0.0001 0.0001 0.0023
100 -0.0024 0.0010 -0.0029 -0.0001 0.0016 -0.0018 -0.0001 -0.0019 0.0005 0.0010
200 0.0010 -0.0054 0.0005 0.0005 -0.0011 -0.0010 -0.0048 0.0001 0.0010 -0.0006

RMSE
20 0.1168 0.0906 0.0703 0.0495 0.0351 0.1033 0.0819 0.0648 0.0443 0.0322
30 0.1107 0.0956 0.0691 0.0492 0.0347 0.0947 0.0802 0.0591 0.0428 0.0299
50 0.1071 0.0830 0.0668 0.0481 0.0339 0.0900 0.0717 0.0555 0.0402 0.0276
100 0.1022 0.0833 0.0657 0.0474 0.0320 0.0843 0.0700 0.0535 0.0384 0.0271
200 0.0980 0.0840 0.0665 0.0452 0.0333 0.0833 0.0694 0.0538 0.0367 0.0276

FEP FEMG
Bias

20 -0.0009 -0.0052 -0.0012 -0.0006 0.0006 -0.0001 -0.0032 -0.0008 0.0004 0.0005
30 0.0052 -0.0019 0.0017 0.0005 0.0006 0.0027 -0.0003 0.0022 0.0006 0.0013
50 0.0037 0.0056 -0.0018 0.0020 0.0014 0.0034 0.0032 -0.0036 0.0011 0.0009
100 -0.0021 0.0004 0.0012 -0.0010 0.0011 -0.0005 0.0017 0.0011 0.0009 0.0003
200 -0.0018 0.0011 0.0031 0.0002 -0.0007 -0.0033 -0.0009 0.0025 0.0003 0.0000

RMSE
220 0.1370 0.1054 0.0801 0.0593 0.0403 0.1301 0.0974 0.0767 0.0550 0.0398
30 0.1339 0.1106 0.0791 0.0573 0.0396 0.1214 0.1031 0.0735 0.0551 0.0366
50 0.1207 0.0994 0.0778 0.0571 0.0398 0.1140 0.0927 0.0716 0.0521 0.0377
100 0.1191 0.0985 0.0770 0.0537 0.0377 0.1082 0.0901 0.0687 0.0502 0.0346
200 0.1175 0.1015 0.0785 0.0541 0.0391 0.1111 0.0932 0.0716 0.0502 0.0362

PCP Bai
Bias

20 -0.0026 -0.0003 -0.0035 -0.0017 0.0004
30 -0.0009 -0.0005 -0.0029 0.0009 -0.0009
50 -0.0031 -0.0041 0.0008 -0.0008 0.0001
100 -0.0016 -0.0017 -0.0014 0.0008 0.0000
200 -0.0014 0.0003 -0.0025 -0.0009 -0.0007

RMSE
20 0.0814 0.0630 0.0460 0.0323 0.0228
30 0.0674 0.0541 0.0397 0.0292 0.0203
50 0.0599 0.0473 0.0370 0.0245 0.0182
100 0.0521 0.0425 0.0320 0.0231 0.0157
200 0.0484 0.0399 0.0309 0.0218 0.0149

PCP HNY PC MGHNY
Bias

20 0.0014 0.0012 -0.0017 -0.0013 0.0007 0.0009 0.0013 -0.0010 -0.0008 0.0009
30 0.0013 0.0012 -0.0018 0.0011 -0.0005 0.0011 0.0020 -0.0022 0.0011 -0.0003
50 -0.0022 -0.0031 0.0014 -0.0004 0.0002 -0.0018 -0.0031 0.0016 0.0002 0.0004
100 0.0007 -0.0004 -0.0004 0.0013 0.0002 0.0005 -0.0007 -0.0006 0.0013 0.0001
200 0.0007 0.0017 -0.0013 -0.0005 -0.0005 0.0009 0.0018 -0.0012 -0.0004 -0.0005

RMSE
20 0.0788 0.0623 0.0458 0.0329 0.0229 0.0816 0.0632 0.0475 0.0332 0.0233
30 0.0671 0.0539 0.0405 0.0293 0.0202 0.0672 0.0536 0.0403 0.0294 0.0202
50 0.0593 0.0465 0.0365 0.0247 0.0181 0.0585 0.0462 0.0365 0.0244 0.0181
100 0.0525 0.0419 0.0320 0.0231 0.0158 0.0520 0.0419 0.0320 0.0231 0.0157
200 0.0489 0.0398 0.0309 0.0217 0.0149 0.0486 0.0396 0.0307 0.0216 0.0148

Notes: See notes to Table 1.
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Table 5: Simulation results for Experiment 3 with correlated factor load-
ings and the full rank for homogeneous β=1

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 0.0749 0.0496 0.0297 0.0131 0.0071 0.0689 0.0462 0.0282 0.0124 0.0069
30 0.0736 0.0510 0.0312 0.0145 0.0079 0.0677 0.0476 0.0304 0.0141 0.0078
50 0.0743 0.0501 0.0304 0.0151 0.0071 0.0682 0.0471 0.0292 0.0148 0.007
100 0.0740 0.0482 0.0308 0.0149 0.0074 0.0670 0.0451 0.0296 0.0145 0.0073
200 0.0727 0.0493 0.0300 0.0151 0.0075 0.0662 0.0460 0.0287 0.0148 0.0074

RMSE
20 0.1020 0.0727 0.0472 0.0276 0.0184 0.0966 0.0716 0.0479 0.0287 0.0192
30 0.0910 0.0673 0.0428 0.0243 0.0159 0.0848 0.0641 0.0426 0.0249 0.0161
50 0.0889 0.0611 0.0381 0.0215 0.0125 0.0820 0.0582 0.0373 0.0214 0.0126
100 0.0865 0.0552 0.0352 0.0182 0.0104 0.0774 0.0517 0.034 0.0179 0.0104
200 0.0819 0.0548 0.0327 0.0171 0.0091 0.0735 0.0508 0.0314 0.0168 0.0091

FEP FEMG
Bias

20 0.6510 0.6523 0.6556 0.6577 0.6578 0.54 0.5371 0.5383 0.5376 0.5379
30 0.6566 0.6605 0.6624 0.6596 0.6621 0.5402 0.5425 0.5428 0.5381 0.5398
50 0.6605 0.6584 0.6603 0.6633 0.6615 0.5416 0.5385 0.5376 0.5401 0.5373
100 0.6574 0.662 0.6609 0.6642 0.6648 0.5377 0.5405 0.538 0.5396 0.5385
200 0.6568 0.6617 0.6624 0.6647 0.6647 0.5373 0.539 0.5383 0.5389 0.5377

RMSE
20 0.6562 0.6564 0.6591 0.6604 0.6601 0.5462 0.5419 0.5422 0.5404 0.5401
30 0.6605 0.6636 0.6647 0.6615 0.6636 0.5449 0.5463 0.5456 0.5402 0.5414
50 0.6637 0.661 0.662 0.6644 0.6625 0.5456 0.5415 0.5396 0.5414 0.5384
100 0.6600 0.6639 0.6621 0.665 0.6654 0.541 0.5428 0.5394 0.5405 0.5391
200 0.6592 0.6633 0.6634 0.6652 0.6651 0.5402 0.5412 0.5395 0.5396 0.5381

PCP Bai
Bias

20 0.0068 0.0031 -0.0007 0.0008 0.0005
30 0.0023 0.0010 0.0008 0.0001 0.0006
50 0.0005 -0.0001 0.0004 0.0001 0.0003
100 0.0007 -0.0003 -0.0004 0.0003 0.0002
200 0.0006 0.0001 0.0001 -0.0003 0.0000

RMSE
20 0.0596 0.0461 0.0356 0.0238 0.0173
30 0.0465 0.0369 0.0282 0.0198 0.0138
50 0.0352 0.0279 0.0208 0.0149 0.0102
100 0.0235 0.0190 0.0147 0.0100 0.0073
200 0.0168 0.0134 0.0105 0.0072 0.0050

PCP HNY PCMG HNY
Bias

20 0.0063 0.0025 -0.0008 0.0008 0.0004 0.0069 0.0029 -0.0013 0.0009 0.0004
30 0.0052 0.0009 0.0008 0.0001 0.0006 0.0053 0.0010 0.0009 -0.0001 0.0005
50 0.0017 0.0012 0.0004 0.0001 0.0003 0.0017 0.0011 0.0005 0.0001 0.0002
100 0.0010 0.0000 0.0000 0.0003 0.0002 0.0009 -0.0001 -0.0001 0.0004 0.0001
200 0.0007 0.0002 0.0002 -0.0002 0.0000 0.0007 0.0002 0.0002 -0.0001 0.0000

RMSE
20 0.0579 0.0452 0.0353 0.0238 0.0173 0.0626 0.0481 0.0371 0.0255 0.0186
30 0.0456 0.0365 0.0280 0.0198 0.0138 0.0477 0.0383 0.0291 0.0204 0.0145
50 0.0349 0.0277 0.0208 0.0149 0.0102 0.0359 0.0284 0.0213 0.0152 0.0104
100 0.0234 0.0190 0.0147 0.0100 0.0073 0.0238 0.0193 0.0149 0.0100 0.0074
200 0.0168 0.0133 0.0105 0.0072 0.0050 0.0170 0.0135 0.0105 0.0073 0.0050

Notes: See notes to Table 1.
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Table 6: Simulation results for Experiment 3 with correlated factor load-
ings and the full rank for heterogeneous βi = 1 + ηi, ηi ∼ iidN(0, 0.04)

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 0.0728 0.0484 0.0301 0.0158 0.0086 0.0678 0.0459 0.0282 0.0155 0.0089
30 0.0727 0.0468 0.0297 0.0130 0.0088 0.0675 0.0440 0.0283 0.0130 0.0083
50 0.0750 0.0502 0.0287 0.0150 0.0074 0.0683 0.0471 0.0274 0.0145 0.0073
100 0.0746 0.0474 0.0304 0.0152 0.0073 0.0682 0.0444 0.0291 0.0149 0.0071
200 0.0767 0.0513 0.0298 0.0144 0.0075 0.0700 0.0482 0.0287 0.0141 0.0074

RMSE
20 0.1121 0.0808 0.0566 0.0346 0.0249 0.1060 0.0791 0.0570 0.0352 0.0250
30 0.1007 0.0738 0.0500 0.0330 0.0227 0.0955 0.0710 0.0493 0.0326 0.0225
50 0.1011 0.0711 0.0465 0.0291 0.0185 0.0940 0.0678 0.0450 0.0288 0.0184
100 0.0959 0.0644 0.0443 0.0273 0.0175 0.0886 0.0613 0.0432 0.0269 0.0175
200 0.0984 0.0675 0.0439 0.0261 0.0168 0.0901 0.0644 0.0428 0.0259 0.0167

FEP FEMG
Bias

20 0.6517 0.6528 0.6545 0.6564 0.6574 0.5413 0.5372 0.5364 0.5378 0.5389
30 0.6528 0.6562 0.6591 0.6606 0.6602 0.5371 0.5381 0.5383 0.5378 0.5383
50 0.6586 0.6568 0.6571 0.6629 0.6637 0.5384 0.5360 0.5344 0.5393 0.5388
100 0.6589 0.6596 0.6619 0.6625 0.6637 0.5403 0.5386 0.5393 0.5379 0.5385
200 0.6589 0.6623 0.6626 0.6624 0.6651 0.5396 0.5411 0.5387 0.5365 0.5382

RMSE
20 0.6595 0.6586 0.6588 0.6595 0.6602 0.5492 0.5435 0.5410 0.5408 0.5415
30 0.6587 0.6612 0.6623 0.6629 0.6621 0.5438 0.5434 0.5416 0.5401 0.5402
50 0.6643 0.6607 0.6599 0.6647 0.6650 0.5445 0.5403 0.5373 0.5411 0.5400
100 0.6639 0.6628 0.6642 0.6639 0.6644 0.5456 0.5422 0.5418 0.5393 0.5393
200 0.6635 0.6657 0.6648 0.6634 0.6657 0.5446 0.5446 0.5409 0.5377 0.5389

PCP Bai
Bias

20 0.0012 -0.0028 -0.0014 -0.0018 -0.0010
30 -0.0056 -0.0048 0.0000 -0.0007 -0.0012
50 -0.0055 -0.0040 -0.0019 -0.0013 -0.0004
100 -0.0043 -0.0041 -0.0024 -0.0016 -0.0005
200 -0.0042 -0.0035 -0.0016 -0.0021 -0.0005

RMSE
20 0.0759 0.0613 0.0453 0.0329 0.0234
30 0.0653 0.0518 0.0403 0.0286 0.0193
50 0.0572 0.0453 0.0362 0.0254 0.0180
100 0.0528 0.0421 0.0333 0.0233 0.0160
200 0.0500 0.0391 0.0312 0.0214 0.0150

PCP HNY PCMG HNY
Bias

20 0.0052 0.0013 0.0013 -0.0005 -0.0004 0.0046 0.0018 0.0007 -0.0005 -0.0004
30 0.0028 -0.0016 0.0025 0.0006 -0.0005 0.0025 -0.0012 0.0027 0.0009 -0.0004
50 0.0013 0.0012 0.0007 0.0001 0.0004 0.0007 0.0012 0.0008 0.0003 0.0004
100 0.0017 -0.0016 0.0006 -0.0002 0.0003 0.0016 -0.0010 0.0003 0.0000 0.0003
200 0.0006 0.0008 0.0011 -0.0006 0.0002 0.0007 0.0007 0.0010 -0.0006 0.0002

RMSE
20 0.0748 0.0610 0.0453 0.0328 0.0233 0.0762 0.0622 0.0462 0.0336 0.0238
30 0.0648 0.0516 0.0405 0.0286 0.0193 0.0651 0.0515 0.0409 0.0287 0.0194
50 0.0569 0.0450 0.0361 0.0254 0.0180 0.0571 0.0449 0.0360 0.0251 0.0178
100 0.0527 0.0419 0.0332 0.0232 0.0160 0.0525 0.0417 0.0330 0.0231 0.0158
200 0.0498 0.0390 0.0312 0.0213 0.0150 0.0495 0.0387 0.0310 0.0211 0.0150

Notes: See notes to Table 1.
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Table 7: Simulation results for Experiment 4 with correlated factor load-
ings and the rank deficiency for homogeneous β=1

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 0.4771 0.4831 0.4848 0.4858 0.4863 0.3502 0.3504 0.3479 0.3472 0.3450
30 0.4809 0.4843 0.4876 0.4912 0.4906 0.3522 0.3463 0.3469 0.3473 0.3451
50 0.4865 0.4880 0.4934 0.4905 0.4966 0.3520 0.3475 0.3488 0.3437 0.3468
100 0.4891 0.4906 0.4953 0.4947 0.4987 0.3513 0.3483 0.3484 0.3444 0.3458
200 0.4856 0.4929 0.4972 0.4957 0.4977 0.3471 0.3468 0.3480 0.3448 0.3450

RMSE
20 0.4922 0.4960 0.4957 0.4945 0.4940 0.3628 0.3603 0.3558 0.3529 0.3498
30 0.4925 0.4935 0.4952 0.4971 0.4964 0.3615 0.3536 0.3524 0.3512 0.3487
50 0.4966 0.4954 0.4990 0.4945 0.5000 0.3602 0.3532 0.3531 0.3465 0.3490
100 0.4971 0.4963 0.4992 0.4972 0.5005 0.3574 0.3527 0.3513 0.3462 0.3470
200 0.4926 0.4974 0.5004 0.4976 0.4990 0.3528 0.3504 0.3505 0.3462 0.3459

FEP FEMG
Bias

20 0.6515 0.6542 0.6573 0.6614 0.6588 0.5401 0.5387 0.5397 0.5421 0.5388
30 0.6548 0.6583 0.6598 0.6614 0.6612 0.5418 0.5390 0.5398 0.5398 0.5389
50 0.6568 0.6581 0.6595 0.6611 0.6648 0.5390 0.5384 0.5378 0.5375 0.5407
100 0.6589 0.6605 0.6618 0.6633 0.6645 0.5384 0.5391 0.5377 0.5376 0.5379
200 0.6555 0.6613 0.6630 0.6641 0.6655 0.5366 0.5385 0.5384 0.5380 0.5387

RMSE
20 0.6572 0.6584 0.6606 0.6640 0.6610 0.5465 0.5435 0.5435 0.5448 0.5411
30 0.6589 0.6614 0.6622 0.6631 0.6628 0.5467 0.5426 0.5426 0.5417 0.5406
50 0.6600 0.6604 0.6613 0.6623 0.6658 0.5432 0.5411 0.5398 0.5389 0.5417
100 0.6615 0.6625 0.6630 0.6641 0.6650 0.5416 0.5415 0.5392 0.5385 0.5385
200 0.6581 0.6628 0.6641 0.6647 0.6659 0.5399 0.5405 0.5398 0.5387 0.5391

PCP Bai
Bias

20 0.0064 0.0013 0.0016 -0.0006 0.0006
30 -0.0019 0.0025 0.0003 0.0002 0.0004
50 0.0008 -0.0003 0.0005 0.0008 0.0001
100 0.0001 0.0006 0.0003 0.0005 -0.0001
200 0.0002 0.0001 -0.0002 0.0001 0.0001

RMSE
20 0.0593 0.0460 0.0345 0.0245 0.0171
30 0.0453 0.0371 0.0278 0.0192 0.0133
50 0.0346 0.0276 0.0214 0.0149 0.0106
100 0.0247 0.0189 0.0150 0.0101 0.0072
200 0.0168 0.0134 0.0103 0.0072 0.0050

PCP HNY PCMG HNY
Bias

20 0.0072 0.0027 0.0029 -0.0003 0.0008 0.0072 0.0026 0.0028 -0.0002 0.0008
30 0.0019 0.0033 0.0007 0.0005 0.0005 0.0016 0.0028 0.0006 0.0002 0.0005
50 0.0017 0.0009 0.0007 0.0009 0.0001 0.0014 0.0004 0.0006 0.001 0.0001
100 0.0004 0.0007 0.0005 0.0006 -0.0001 0.0004 0.0006 0.0006 0.0005 -0.0001
200 0.0003 0.0004 -0.0001 0.0002 0.0001 0.0003 0.0005 -0.0001 0.0002 0.0001

RMSE
20 0.0618 0.0478 0.0352 0.0247 0.0171 0.0669 0.0516 0.0375 0.0261 0.0182
30 0.0472 0.0382 0.0282 0.0193 0.0134 0.0500 0.0393 0.0293 0.02 0.014
50 0.0359 0.0282 0.0216 0.0151 0.0106 0.0366 0.0288 0.0221 0.0154 0.0108
100 0.0257 0.0196 0.0154 0.0103 0.0073 0.0260 0.0199 0.0156 0.0103 0.0073
200 0.0175 0.0138 0.0106 0.0073 0.005 0.0175 0.0138 0.0106 0.0073 0.0051

Notes: See notes to Table 1.
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Table 8: Simulation results for Experiment 4 with correlated fac-
tor loadings and the rank deficiency for heterogeneous βi = 1 + ηi,
ηi ∼ iidN(0, 0.04)

T/N 20 30 50 100 200 20 30 50 100 200
CCEP CCEMG

Bias
20 0.4731 0.4771 0.4785 0.4777 0.4758 0.3478 0.3478 0.3434 0.3405 0.3384
30 0.4750 0.4766 0.4839 0.4857 0.4879 0.3469 0.3412 0.3453 0.3447 0.3429
50 0.4843 0.4839 0.4880 0.4895 0.4867 0.3472 0.3450 0.3458 0.3447 0.3395
100 0.4882 0.4939 0.4882 0.4873 0.4923 0.3518 0.3475 0.3429 0.3396 0.3425
200 0.4842 0.4887 0.4909 0.4925 0.4947 0.3466 0.3454 0.3444 0.3426 0.3427

RMSE
20 0.4926 0.4925 0.4902 0.4873 0.4856 0.3647 0.3607 0.3528 0.3470 0.3445
30 0.4915 0.4875 0.4927 0.4919 0.4934 0.3602 0.3499 0.3521 0.3491 0.3465
50 0.4960 0.4932 0.4949 0.4941 0.4906 0.3563 0.3526 0.3511 0.3482 0.3422
100 0.4990 0.5008 0.4933 0.4906 0.4947 0.3609 0.3535 0.3468 0.3421 0.3441
200 0.4946 0.4955 0.4950 0.4951 0.4963 0.3549 0.3512 0.3477 0.3447 0.3439

FEP FEMG
Bias

20 0.6495 0.6548 0.6516 0.6571 0.6558 0.5387 0.5403 0.5353 0.5375 0.5357
30 0.6504 0.6564 0.6600 0.6605 0.6617 0.5358 0.5382 0.5412 0.5399 0.5383
50 0.6563 0.6556 0.6608 0.6643 0.6628 0.5359 0.5361 0.5398 0.5418 0.5376
100 0.6601 0.6632 0.6591 0.6618 0.6654 0.5416 0.5399 0.5365 0.5377 0.5400
200 0.6576 0.6603 0.6618 0.6653 0.6665 0.5383 0.5379 0.5388 0.5388 0.5389

RMSE
20 0.6583 0.6608 0.6561 0.6603 0.6584 0.5483 0.5470 0.5402 0.5407 0.5383
30 0.6579 0.6612 0.6635 0.6627 0.6634 0.5435 0.5434 0.5447 0.5422 0.5400
50 0.6618 0.6599 0.6636 0.6660 0.6640 0.5417 0.5407 0.5427 0.5436 0.5389
100 0.6651 0.6665 0.6615 0.6632 0.6663 0.5471 0.5436 0.5389 0.5392 0.5408
200 0.6629 0.6635 0.6639 0.6664 0.6672 0.5434 0.5414 0.5409 0.5400 0.5396

PCP Bai
Bias

20 0.0013 -0.0012 -0.0011 -0.0005 0.0002
30 -0.0028 0.0002 -0.0001 -0.0007 -0.0009
50 -0.0031 -0.0026 -0.0008 -0.0005 -0.0003
100 -0.0045 -0.0020 -0.0009 -0.0009 0.0004
200 -0.0019 -0.0018 -0.0013 -0.0008 -0.0005

RMSE
20 0.0738 0.0597 0.0460 0.0323 0.0227
30 0.0638 0.0530 0.0404 0.0277 0.0205
50 0.0575 0.0473 0.0350 0.0254 0.0175
100 0.0518 0.0403 0.0307 0.0232 0.0161
200 0.0500 0.0384 0.0306 0.0209 0.0154

PCP HNY PCMG HNY
Bias

20 0.0064 0.0022 0.0011 0.0007 0.0008 0.0066 0.0024 0.0014 0.0007 0.0007
30 0.0034 0.0034 0.0019 0.0005 -0.0003 0.0028 0.0032 0.0018 0.0006 -0.0001
50 0.0016 0.0009 0.0012 0.0003 0.0002 0.0020 0.0007 0.0009 0.0004 0.0002
100 -0.0016 0.0010 0.0010 0.0000 0.0009 -0.0018 0.0009 0.0011 0.0000 0.0008
200 0.0018 0.0012 0.0006 0.0001 0.0000 0.0019 0.0011 0.0006 0.0002 0.0000

RMSE
20 0.0769 0.0617 0.0462 0.0324 0.0228 0.0803 0.0638 0.0471 0.0327 0.0230
30 0.0652 0.0545 0.0409 0.0279 0.0205 0.0650 0.0543 0.0409 0.0280 0.0204
50 0.0586 0.0482 0.0352 0.0255 0.0175 0.0586 0.0480 0.0352 0.0254 0.0174
100 0.0523 0.0406 0.0308 0.0232 0.0161 0.0519 0.0403 0.0305 0.0231 0.0161
200 0.0507 0.0386 0.0305 0.0209 0.0154 0.0503 0.0383 0.0304 0.0209 0.0154

Notes: See notes to Table 1.
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Table 9: Size and power of the HNON statistic and coverage rates at 95 % level.
Experiment 1 Experiment 3

Size of the H_PCBai Power of the H_PCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.072 0.059 0.059 0.057 0.047 50 1 1 1 1 1
100 0.058 0.055 0.058 0.054 0.051 100 1 1 1 1 1
150 0.073 0.070 0.053 0.047 0.047 150 1 1 1 1 1
200 0.061 0.050 0.049 0.056 0.048 200 1 1 1 1 1
500 0.071 0.054 0.048 0.046 0.060 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.082 0.069 0.073 0.062 0.053 50 1 1 1 1 1
100 0.059 0.056 0.063 0.060 0.052 100 1 1 1 1 1
150 0.072 0.069 0.053 0.048 0.048 150 1 1 1 1 1
200 0.059 0.052 0.050 0.056 0.050 200 1 1 1 1 1
500 0.070 0.054 0.048 0.046 0.060 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.919 0.939 0.950 0.941 0.942 50 0 0 0 0 0
100 0.936 0.950 0.942 0.952 0.944 100 0 0 0 0 0
150 0.939 0.931 0.947 0.950 0.947 150 0 0 0 0 0
200 0.939 0.955 0.949 0.939 0.939 200 0 0 0 0 0
500 0.932 0.944 0.948 0.954 0.945 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.92 0.939 0.943 0.936 0.95 50 0.922 0.942 0.937 0.941 0.947
100 0.917 0.923 0.926 0.953 0.955 100 0.925 0.948 0.936 0.942 0.953
150 0.91 0.936 0.938 0.957 0.937 150 0.931 0.921 0.933 0.942 0.942
200 0.916 0.934 0.933 0.951 0.951 200 0.918 0.938 0.939 0.932 0.935
500 0.911 0.929 0.924 0.934 0.948 500 0.927 0.937 0.943 0.945 0.948

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.909 0.927 0.928 0.929 0.940 50 0.928 0.943 0.938 0.942 0.949
100 0.914 0.923 0.919 0.947 0.952 100 0.932 0.948 0.935 0.940 0.954
150 0.914 0.929 0.937 0.956 0.933 150 0.919 0.941 0.933 0.942 0.942
200 0.913 0.935 0.935 0.950 0.947 200 0.924 0.934 0.946 0.932 0.935
500 0.914 0.928 0.923 0.934 0.948 500 0.924 0.936 0.942 0.946 0.948

Experiment 2 Experiment 4
Size of the H_PCBai Power of the H_PCBai

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.090 0.059 0.061 0.044 0.038 50 1 1 1 1 1
100 0.073 0.050 0.052 0.059 0.054 100 1 1 1 1 1
150 0.051 0.053 0.037 0.056 0.051 150 1 1 1 1 1
200 0.076 0.051 0.058 0.049 0.047 200 1 1 1 1 1
500 0.072 0.057 0.042 0.069 0.048 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.090 0.059 0.061 0.044 0.038 50 1 1 1 1 1
100 0.074 0.050 0.052 0.059 0.054 100 1 1 1 1 1
150 0.054 0.052 0.037 0.056 0.051 150 1 1 1 1 1
200 0.076 0.050 0.057 0.049 0.047 200 1 1 1 1 1
500 0.073 0.056 0.041 0.069 0.048 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.925 0.943 0.939 0.944 0.961 50 0 0 0 0 0
100 0.927 0.956 0.945 0.936 0.941 100 0 0 0 0 0
150 0.951 0.955 0.962 0.95 0.941 150 0 0 0 0 0
200 0.928 0.947 0.947 0.948 0.951 200 0 0 0 0 0
500 0.935 0.942 0.956 0.933 0.953 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.912 0.937 0.942 0.951 0.956 50 0.915 0.935 0.938 0.947 0.951
100 0.891 0.930 0.941 0.936 0.961 100 0.776 0.953 0.945 0.947 0.949
150 0.916 0.910 0.930 0.944 0.943 150 0.754 0.652 0.936 0.939 0.936
200 0.913 0.911 0.919 0.934 0.945 200 0.829 0.783 0.605 0.948 0.960
500 0.912 0.938 0.917 0.924 0.938 500 0.884 0.855 0.826 0.768 0.951

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.912 0.936 0.942 0.951 0.956 50 0.906 0.926 0.934 0.939 0.939
100 0.922 0.930 0.941 0.936 0.961 100 0.918 0.948 0.939 0.943 0.949
150 0.917 0.931 0.930 0.944 0.943 150 0.909 0.939 0.934 0.939 0.933
200 0.924 0.942 0.956 0.934 0.945 200 0.915 0.927 0.951 0.947 0.956
500 0.904 0.939 0.928 0.935 0.938 500 0.922 0.935 0.948 0.950 0.950

Notes: FE denotes the two-way fixed effect estimators; PCBai is the iterative pooled principal component estimator

by Bai (2009) while PCHNY is the pooled principal component estimator by Hayakawa, Nagata, and Yamagata

(2018). The PC estimators are bias-corrected and evaluated using the ICp1 criterion by Bai and Ng (2002). HNON

is the H-statistic defined in (27).
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Table 10: Size and power of the HHAC statistic and coverage rates at 95 % level.
Experiment 1 Experiment 3

Size of the H_PCBai Power of the H_PCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.091 0.062 0.049 0.061 0.050 50 1 1 1 1 1
100 0.072 0.057 0.052 0.052 0.054 100 1 1 1 1 1
150 0.058 0.059 0.054 0.063 0.047 150 1 1 1 1 1
200 0.059 0.056 0.060 0.060 0.041 200 1 1 1 1 1
500 0.079 0.063 0.048 0.050 0.055 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.102 0.067 0.061 0.071 0.058 50 1 1 1 1 1
100 0.072 0.06 0.054 0.052 0.059 100 1 1 1 1 1
150 0.055 0.059 0.055 0.067 0.048 150 1 1 1 1 1
200 0.057 0.056 0.061 0.06 0.043 200 1 1 1 1 1
500 0.077 0.063 0.048 0.049 0.055 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.921 0.935 0.946 0.953 0.958 50 0 0 0 0 0
100 0.938 0.957 0.946 0.943 0.948 100 0 0 0 0 0
150 0.940 0.944 0.941 0.936 0.951 150 0 0 0 0 0
200 0.949 0.951 0.942 0.940 0.956 200 0 0 0 0 0
500 0.923 0.941 0.953 0.952 0.945 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.926 0.937 0.942 0.941 0.936 50 0.922 0.935 0.934 0.945 0.937
100 0.903 0.927 0.953 0.949 0.953 100 0.929 0.941 0.932 0.941 0.947
150 0.908 0.946 0.935 0.938 0.940 150 0.926 0.913 0.951 0.939 0.952
200 0.926 0.932 0.943 0.944 0.945 200 0.928 0.926 0.950 0.947 0.950
500 0.904 0.939 0.940 0.931 0.935 500 0.921 0.942 0.939 0.950 0.950

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.913 0.931 0.927 0.930 0.925 50 0.923 0.936 0.935 0.943 0.936
100 0.898 0.925 0.952 0.947 0.948 100 0.923 0.940 0.934 0.941 0.950
150 0.911 0.948 0.934 0.934 0.937 150 0.928 0.917 0.951 0.939 0.953
200 0.926 0.934 0.945 0.940 0.943 200 0.924 0.928 0.948 0.947 0.950
500 0.904 0.939 0.940 0.935 0.935 500 0.920 0.941 0.938 0.956 0.950

Experiment 2 Experiment 4
Size of the H_PCBai Power of the H_PCBai

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.070 0.070 0.056 0.060 0.054 50 1 1 1 1 1
100 0.076 0.050 0.065 0.055 0.049 100 1 1 1 1 1
150 0.070 0.073 0.050 0.051 0.045 150 1 1 1 1 1
200 0.064 0.061 0.061 0.061 0.054 200 1 1 1 1 1
500 0.059 0.065 0.060 0.052 0.048 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.086 0.076 0.076 0.072 0.072 50 1 1 1 1 1
100 0.077 0.060 0.071 0.066 0.058 100 1 1 1 1 1
150 0.069 0.076 0.054 0.055 0.045 150 1 1 1 1 1
200 0.068 0.069 0.057 0.062 0.059 200 1 1 1 1 1
500 0.060 0.064 0.061 0.050 0.049 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.935 0.938 0.949 0.947 0.949 50 0 0 0 0 0
100 0.914 0.952 0.942 0.946 0.942 100 0 0 0 0 0
150 0.931 0.926 0.954 0.948 0.960 150 0 0 0 0 0
200 0.933 0.936 0.937 0.943 0.945 200 0 0 0 0 0
500 0.941 0.937 0.944 0.951 0.954 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.934 0.931 0.943 0.935 0.946 50 0.930 0.952 0.943 0.959 0.957
100 0.899 0.945 0.929 0.945 0.956 100 0.675 0.943 0.952 0.956 0.961
150 0.900 0.924 0.940 0.941 0.949 150 0.754 0.661 0.941 0.952 0.955
200 0.916 0.914 0.918 0.946 0.957 200 0.793 0.786 0.584 0.942 0.938
500 0.913 0.930 0.921 0.929 0.952 500 0.885 0.847 0.835 0.797 0.948

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.909 0.921 0.916 0.915 0.923 50 0.922 0.945 0.926 0.947 0.942
100 0.901 0.932 0.921 0.938 0.948 100 0.907 0.936 0.951 0.954 0.956
150 0.916 0.926 0.935 0.935 0.948 150 0.922 0.921 0.939 0.949 0.952
200 0.913 0.933 0.934 0.944 0.952 200 0.911 0.940 0.953 0.937 0.934
500 0.925 0.926 0.922 0.934 0.950 500 0.920 0.925 0.940 0.938 0.948

Notes: FE denotes the two-way fixed effect estimators; PCBai is the iterative pooled principal component estimator

by Bai (2009) while PCHNY is the pooled principal component estimator by Hayakawa, Nagata, and Yamagata

(2018). The PC estimators are bias-corrected and evaluated using the ICp1 criterion by Bai and Ng (2002). HNON

is the H-statistic defined in (28).
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Table 11: Size and power of the HNON statistic and coverage rates at 95 % level for serirally correlated errors
and heterogeneous βs.

Experiment 1 Experiment 3
Size of the H_PCBai Power of the H_PCBai

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.068 0.057 0.054 0.043 0.054 50 1 1 1 1 1
100 0.061 0.049 0.065 0.062 0.046 100 1 1 1 1 1
150 0.073 0.057 0.052 0.049 0.042 150 1 1 1 1 1
200 0.059 0.055 0.066 0.048 0.051 200 1 1 1 1 1
500 0.060 0.062 0.054 0.061 0.057 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.072 0.064 0.064 0.057 0.065 50 1 1 1 1 1
100 0.060 0.055 0.072 0.063 0.046 100 1 1 1 1 1
150 0.073 0.056 0.053 0.051 0.045 150 1 1 1 1 1
200 0.059 0.055 0.066 0.050 0.054 200 1 1 1 1 1
500 0.059 0.062 0.053 0.060 0.058 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.944 0.948 0.945 0.951 0.948 50 0 0 0 0 0
100 0.942 0.952 0.938 0.949 0.955 100 0 0 0 0 0
150 0.932 0.943 0.945 0.957 0.949 150 0 0 0 0 0
200 0.941 0.941 0.931 0.947 0.952 200 0 0 0 0 0
500 0.926 0.937 0.952 0.934 0.939 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.926 0.914 0.942 0.941 0.941 50 0.924 0.930 0.938 0.946 0.943
100 0.922 0.948 0.951 0.943 0.937 100 0.834 0.936 0.943 0.946 0.952
150 0.919 0.924 0.936 0.945 0.941 150 0.809 0.777 0.938 0.944 0.947
200 0.919 0.929 0.944 0.945 0.935 200 0.884 0.856 0.815 0.947 0.942
500 0.916 0.945 0.938 0.914 0.952 500 0.896 0.913 0.901 0.907 0.952

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.921 0.909 0.930 0.926 0.930 50 0.838 0.870 0.845 0.851 0.851
100 0.916 0.942 0.943 0.942 0.937 100 0.860 0.889 0.901 0.900 0.896
150 0.919 0.924 0.934 0.943 0.938 150 0.875 0.893 0.909 0.917 0.937
200 0.916 0.929 0.940 0.943 0.932 200 0.904 0.897 0.911 0.931 0.928
500 0.917 0.943 0.940 0.914 0.951 500 0.906 0.924 0.933 0.943 0.947

Experiment 2 Experiment 4
Size of the H_PCBai Power of the H_PCBai

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.064 0.054 0.062 0.057 0.055 50 1 1 1 1 1
100 0.056 0.068 0.055 0.050 0.044 100 1 1 1 1 1
150 0.061 0.053 0.051 0.052 0.051 150 1 1 1 1 1
200 0.067 0.050 0.064 0.048 0.054 200 1 1 1 1 1
500 0.072 0.062 0.065 0.062 0.053 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.080 0.061 0.074 0.075 0.064 50 1 1 1 1 1
100 0.063 0.071 0.058 0.056 0.049 100 1 1 1 1 1
150 0.065 0.051 0.056 0.054 0.054 150 1 1 1 1 1
200 0.072 0.046 0.066 0.048 0.057 200 1 1 1 1 1
500 0.070 0.058 0.058 0.060 0.053 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.938 0.933 0.942 0.946 0.953 50 0 0 0 0 0
100 0.943 0.943 0.933 0.937 0.955 100 0 0 0 0 0
150 0.943 0.945 0.956 0.949 0.946 150 0 0 0 0 0
200 0.941 0.951 0.935 0.957 0.943 200 0 0 0 0 0
500 0.924 0.944 0.949 0.938 0.950 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.915 0.931 0.945 0.950 0.938 50 0.925 0.949 0.940 0.958 0.939
100 0.918 0.938 0.935 0.933 0.960 100 0.871 0.940 0.938 0.943 0.951
150 0.916 0.945 0.943 0.930 0.935 150 0.908 0.882 0.952 0.947 0.941
200 0.903 0.931 0.936 0.945 0.957 200 0.904 0.891 0.857 0.945 0.947
500 0.927 0.950 0.954 0.944 0.952 500 0.903 0.927 0.934 0.945 0.952

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.899 0.921 0.930 0.928 0.930 50 0.920 0.941 0.932 0.952 0.927
100 0.913 0.933 0.931 0.926 0.954 100 0.901 0.936 0.935 0.941 0.951
150 0.925 0.939 0.939 0.927 0.930 150 0.920 0.933 0.951 0.946 0.940
200 0.915 0.931 0.946 0.944 0.954 200 0.925 0.934 0.934 0.943 0.946
500 0.925 0.948 0.953 0.940 0.952 500 0.908 0.940 0.940 0.950 0.952

Notes: see notes to Table 9 .
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Table 12: Size and power of the HHAC statistic and coverage rates at 95 % level for serirally correlated errors and
heterogeneous βs.

Experiment 1 Experiment 3
Size of the H_PCBai Power of the H_PCBai

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.068 0.074 0.045 0.054 0.053 50 1 1 1 1 1
100 0.068 0.053 0.054 0.052 0.045 100 1 1 1 1 1
150 0.070 0.064 0.056 0.053 0.047 150 1 1 1 1 1
200 0.053 0.060 0.058 0.059 0.043 200 1 1 1 1 1
500 0.068 0.055 0.062 0.059 0.053 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.074 0.076 0.054 0.068 0.064 50 1 1 1 1 1
100 0.066 0.057 0.057 0.054 0.048 100 1 1 1 1 1
150 0.070 0.062 0.056 0.058 0.051 150 1 1 1 1 1
200 0.054 0.059 0.056 0.061 0.044 200 1 1 1 1 1
500 0.068 0.055 0.061 0.059 0.053 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.937 0.941 0.940 0.947 0.950 50 0 0 0 0 0
100 0.929 0.938 0.947 0.943 0.950 100 0 0 0 0 0
150 0.924 0.933 0.940 0.947 0.954 150 0 0 0 0 0
200 0.943 0.943 0.943 0.928 0.956 200 0 0 0 0 0
500 0.924 0.944 0.952 0.931 0.946 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.923 0.941 0.951 0.938 0.939 50 0.927 0.920 0.939 0.948 0.930
100 0.909 0.937 0.939 0.944 0.960 100 0.755 0.926 0.943 0.932 0.955
150 0.916 0.911 0.936 0.937 0.953 150 0.748 0.711 0.943 0.935 0.937
200 0.911 0.931 0.938 0.950 0.959 200 0.836 0.790 0.663 0.944 0.963
500 0.906 0.937 0.937 0.941 0.932 500 0.895 0.902 0.885 0.868 0.938

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.917 0.937 0.941 0.924 0.929 50 0.857 0.858 0.853 0.904 0.870
100 0.910 0.933 0.936 0.942 0.955 100 0.891 0.894 0.917 0.891 0.925
150 0.913 0.908 0.936 0.932 0.950 150 0.842 0.902 0.923 0.908 0.921
200 0.911 0.932 0.940 0.947 0.957 200 0.900 0.897 0.909 0.931 0.941
500 0.905 0.937 0.937 0.940 0.931 500 0.906 0.927 0.930 0.915 0.934

Experiment 2 Experiment 4
Size of the H_PCBai Power of the H_PCBai

T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.078 0.054 0.057 0.051 0.050 50 1 1 1 1 1
100 0.075 0.051 0.052 0.059 0.063 100 1 1 1 1 1
150 0.064 0.064 0.042 0.054 0.053 150 1 1 1 1 1
200 0.091 0.044 0.060 0.051 0.036 200 1 1 1 1 1
500 0.086 0.055 0.066 0.040 0.049 500 1 1 1 1 1

Size of the H_PCHNY Power of the H_PCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.086 0.064 0.072 0.060 0.067 50 1 1 1 1 1
100 0.074 0.056 0.056 0.066 0.071 100 1 1 1 1 1
150 0.064 0.067 0.045 0.057 0.053 150 1 1 1 1 1
200 0.091 0.044 0.064 0.052 0.040 200 1 1 1 1 1
500 0.084 0.056 0.064 0.037 0.049 500 1 1 1 1 1

Coverage rates βFE Coverage rates βFE
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.929 0.948 0.937 0.936 0.952 50 0 0 0 0 0
100 0.918 0.942 0.951 0.942 0.925 100 0 0 0 0 0
150 0.943 0.942 0.959 0.937 0.952 150 0 0 0 0 0
200 0.914 0.954 0.942 0.946 0.957 200 0 0 0 0 0
500 0.925 0.941 0.938 0.954 0.952 500 0 0 0 0 0

Coverage rates βPCBai Coverage rates βPCBai
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.918 0.942 0.937 0.928 0.934 50 0.930 0.934 0.928 0.941 0.937
100 0.910 0.936 0.925 0.936 0.941 100 0.862 0.937 0.935 0.941 0.939
150 0.920 0.930 0.938 0.942 0.947 150 0.882 0.899 0.947 0.949 0.948
200 0.907 0.929 0.949 0.945 0.940 200 0.895 0.889 0.885 0.935 0.945
500 0.922 0.932 0.941 0.944 0.952 500 0.925 0.934 0.937 0.940 0.946

Coverage rates βPCHNY Coverage rates βPCHNY
T/N 50 100 150 200 500 T/N 50 100 150 200 500
50 0.910 0.925 0.919 0.917 0.918 50 0.921 0.924 0.920 0.933 0.933
100 0.910 0.927 0.918 0.928 0.934 100 0.916 0.931 0.933 0.935 0.934
150 0.921 0.933 0.934 0.938 0.947 150 0.910 0.948 0.947 0.945 0.945
200 0.909 0.934 0.947 0.944 0.936 200 0.911 0.922 0.944 0.934 0.943
500 0.918 0.932 0.936 0.947 0.951 500 0.933 0.934 0.948 0.961 0.946

Notes: see notes to Table 10 .
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