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Abstract

This chapter outlines the theoretical foundations and empirical
applications of spatial econometrics in energy markets research. Spatial
econometrics deals with spatial autocorrelation and spatial heterogeneity,
two key issues in energy finance during the low carbon transition.
Indeed, with congested grids and a high penetration of geographically
heterogeneous intermittent renewables, the electricity markets can be
more accurately modelled and forecasted by taking account of spatial
effects. After illustrating the main spatial aspects of electricity pricing,
production, and consumption, the chapter summarises the theory of
spatial econometrics and highlights its advantages over alternative
estimation methods. The existing applications of spatial econometrics to
electricity markets are thus reviewed, such as forecasting electricity
demand and wholesale electricity prices, as well as assessing the
diffusion of photovoltaics. Methodological implications and open issues
are discussed in the final section.
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1. Introduction

The spatial organization of the electricity industry is a key issue in the

current energy policy debate in many parts of the world, its relevance

being fostered by the policy goals of de-carbonization and of integration

among physically separated markets. Balta-Ozkan et al. [2015a] review
3
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the literature on the interdependencies between de-carbonization and

local economic development, showing that five trends motivate the study
of the electricity industry through the tools of spatial analysis.

First, the potentials for renewable energy generation are spatially
uneven, because of geographical differences in average insolation rates,
wind speeds, as well as geothermal and hydrological endowments, which
reflect local climatic and orographic conditions. Second, and implied by
the first trend, the deployment of green energy technologies is spatially
concentrated. Spatial patterns of statistical dependance are incorporated
in models and forecasts of wind power generation, notably in order to
make inference on the distribution of wind speeds in new sites for which
time series data are lacking or scarcely available. A third trend is
highlighted by the geographical fragmentation in the governance of the
liberalized electricity markets. In this new governance setting,
relationships between electricity users and producers unfold in space,
through both physical and social connections. Prosumers using
distributed generation facilities are linked through social ties (which may
help spreading information on new technology vintages) and their
physical interlinkages are primarily “local”, as they are mediated through
the (short-distance, low-voltage) distribution grid instead of the (long-
distance, high-voltage) transmission grid. Relatedly, geographical
differences in urbanization rates influence the diffusion of distributed
generation technologies, marking a fourth trend.

Last, but not least, there are interactions between agglomeration
economies and transmission constraints, as a specific instance of the
efficiency gains from spatial integration among energy markets.
Promoting regional integration, indeed, is based on the presumption that
increased cross-border trade fosters productive efficiency by expanding
the reach of the most efficient plants, and it improves allocative
efficiency by inducing competition among producers that are
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geographically separate [Borenstein 2000; Wolak, 2015].! The
integration of electricity markets across regional areas has played a
significant role in the development of electricity markets in the United
States, as testified by the PJM Interconnection, and lies at the heart of the
European Union energy policy goal of creating an internal market for
energy [Glachant 2004, Meeus et al. 2005].2 Reconciling the goal of
regional integration with de-carbonization targets is however a difficult
challenge [Glachant and Ruester, 2014], as demonstrated by recent
evidence of market integration being spoiled by the burgeoning growth

in renewables, which questions the traditional electricity-fuel nexus (De
Menezes et al. 2016, Gianfreda et al. 2016].

As a bottom line, both de-carbonization and market integration
policies are significantly conditioned by the spatial organization of the
electricity industry. This is true at the policy-making level, as well as in
the perspective of private production and investment decisions. However,
besides spatial interpolation techniques, such as kriging estimators used
to assist wind investment decision-making by Haslett and Raftery
[1989], Lenzi et al. [2016] and others, space has been incorporated in
forecasting analyses only in time series fashion. For instance. in Gneiting
et al. [2006], Hering and Genton [2010] and follow-ups, the mean of the
wind speed distribution at one site depends linearly on lagged wind

While some simulation analyses corroborate the theoretical
expectation of efficiency gains [Wolak 2015, Valeri 2009, Boffa et al.
2010, De Nooij 2011], evidence of collusive behaviours dates back to
the California electricity crisis [Cicchetti et al., 2004], down to more
recent examples of inefficient arbitrage across interconnectors [Bunn
and Zachmann 2010, Mclnerney and Bunn 2013]. See also Boffa and
Sapio [2015].

2

The EU is also part and parcel in large-scale inter-connection
projects such as those envisioned in the Mediterranean Solar Plan
[Jablonski et al., 2012; Escribano, 2010], within the broader goal of
building electricity highways running from the North Sea to Northern
Africa [Sanchis et al., 2015; Trieb and Miiller-Steinhagen, 2007].
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speeds at other locations, resembling a vector autoregressive or a

distributed lag model. Similarly, energy econometrics relies primarily
upon time series models when it comes to understanding and forecasting
electricity prices and consumption, which are extremely relevant both for
policy-making and for shaping the expectations of private actors. Spatial
econometric methods have not yet gained a comparable status in applied
research work, despite the result established by Giacomini and Granger
[2004] that in predicting the aggregate of spatially correlated variables,
forecasting is inaccurate if spatial effects are overlooked.

Against this background, this chapter outlines the theoretical
foundations and the main empirical applications of spatial econometrics
in energy markets research. Spatial econometrics is an array of models,
estimation methods and tests that can be used when dealing with data
samples possibly characterised by spatial dependence [Anselin, 1988].
Spatial dependence arises when the value assumed by a variable in a
given location is correlated with the value that the same variable assumes
in another place or in a set of other places. More specifically,
heterogeneity (heteroscedasticity) and autocorrelation (dependence) are
the main issues posed by the treatment of data series related to
geographical entities. According to Anselin and Bera [1998], spatial
autocorrelation occurs when high or low values for a random variable
tend to cluster in space (positive spatial autocorrelation) or locations tend
to be surrounded by neighbours with very dissimilar values (negative
spatial autocorrelation). The idea that “space matters” was stated by
Tobler [1970] with his First Law of Geography: “Everything is related to
everything else, but near things are more related than distant things”.
The problems posed by spatially-organised data characterised by spatial
autocorrelation require distinct treatments and prevents the use of
approaches based on a one-way direction relationship among different
geographical units.

The reviewed evidence sheds light on the value added of spatial
econometric models in our understanding of price-setting, demand, and
technological diffusion dynamics in the electricity industry, as well as in
forecasting electricity prices over time horizons that are relevant for the
policy goals of efficiency and reliability of the industry. We thereby
expand the reach of recent literature reviews on statistical forecasting of
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electricity prices [Weron 2014, Nowotarski and Weron 2017] and
demand [Hong 2014; chapter 3 in Weron 2007].

After illustrating the main spatial aspects in the functioning of
the electricity industry (Section 2), the chapter summarises the
modelling, estimation, and testing methodologies in spatial econometrics
(Section 3). The existing applications of spatial econometrics to
electricity markets are thus reviewed in Section 4, such as modelling and
forecasting electricity demand and wholesale electricity prices, as well as
assessing the diffusion of photovoltaic panels. The works reviewed here
show that explicitly considering spatial correlations improves the
forecasting performance and the understanding of electricity market
dynamics. Section 5 concludes while offering a discussion of open issues
and an outlook for future research on the spatial econometrics of
electricity markets.

2. Spatial aspects of electricity markets

As this chapter will show, energy econometrics has only recently
recognised the value added of estimating spatial dependance patterns. In
fact, it is remarkable how the importance of spatial networks in affecting
the decisions of agents producing and consuming electricity has been
neglected for long time even in theoretical work. One notable exception
was provided by Nijkamp [1983], who explored the nexus between
energy policy goals, urban planning, and the spatial distribution of
economic activities (as influenced by industrial policy), stressing its
strategic relevance for policy makers.

Such a neglect can be traced back to the history of the electricity
industry, that has been gravitating between two opposite configurations
[Granovetter and McGuire, 1998]. In the early days, in the US, self-
producers were prevailing, at a time when long-range interconnections
had yet to be sufficiently developed. In the subsequent configuration,
that took over approximately from 1920 on, the industry came to be
dominated by centralised technical control in the hands of vertically
integrated (regulated) monopolists, when electricity was produced by
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plants exploiting economies of scale and could be considered, within

each country, as a spatially homogeneous, standardised service.
Investments in new generation, transmission, and distribution
infrastructures were centrally coordinated. Dispatching, planning, and
investment decisions were conditioned by the implicit “transport costs”
between nodes, but the associated issues were solved within vertically
integrated organisations.

Since the late 1970s and the 1980s the growing sensitivity to
environmental issues, the progress in information and communication
technologies, as well as the fall in the minimum efficient scale following
the introduction of combined-cycle gas turbines have been powerful
drivers in the transition to a decentralised and deregulated regime, in
which facilities along the power supply chain are unbundled [Pollitt
2008]. Drawing on the seminal work of Dosi [1988], Kiinneke [2008] has
interpreted the increasingly distributed technical control in electricity
systems as a transition between technological paradigms (from
centralized to decentralized). Technological paradigms in the power
supply chain differ in terms of the spatial patterns of energy generation,
transmission, and distribution, as well as with respect to cost structures
and to the degree of involvement and reactiveness of energy users, with
the emergence of prosumers in the decentralized paradigm (see
Schleicher-Tappeser [2012] among others).

In light of the outlined turns in technological paradigms,
economic thinking, policy making goals and practices, the time is ripe
for the explicit in corporation of spatial correlations in the statistical
modelling and forecasting of electricity industry variables. It is worth
providing a few more details on the theoretical roots of spatial effects in
wholesale electricity prices and in their demand and supply determinants.

In a structural approach to electricity price modelling, the
electricity price at a certain time and location is a function of its
“fundamentals”, namely electricity demand, fuel prices, transmission
constraints, the parameters of strategic reaction functions (associated to
dispatchable energy sources), supply components that are non-strategic
within the given bidding horizon (i.e. renewable energy sources,
derivative contracts), and unobservable determinants, i.e. the error term
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in an econometric model (see Carmona and Coulon [2014] for a survey).

Such determinants can exercise their effects across time and space, hence
they should be included in econometric models with time and spatial
lags. In such a structural model, spatial dependence among electricity
prices at different locations is due to spatial dependence in electricity
price fundamentals and/or in the unobservables. More frequently, though,
econometric models of electricity prices are reduced-form models,
wherein the time and spatial correlations are modelled directly.

As a matter of fact, one key reason motivating the use of spatial
econometrics in modelling electricity prices can be traced back to
seminal work by Bohn, Caramanis, and Schweppes [1984] on nodal
pricing. Nodal prices are computed as the solution of a system cost
minimisation programme, subject to various constraints. Optimal nodal
prices were shown to vary stochastically across time and locations, and
specifically price differences between two nodes may emerge depending
on events throughout the transmission grid. The reason is that whenever
an additional power generator injects electricity into the system, the
thermal constraints may become binding due to congestion, thereby
shifting nodal prices away from marginal costs. Even when transmission
lines are congested, price differentials reflect the relative scarcity of
electricity at neighbouring locations, so that, following Bushnell and
Stoft [1996], the optimal nodal price at one location reflects the average
nodal prices at neighbouring locations.

Within such a reduced-form approach to modelling electricity
prices, the tests of market integration are well suited to illustrate the
potential informative role of spatial econometrics. Indeed, the time series
tests performed in the literature offer information on the spatial linkages
between electricity prices, but only implicitly. Under perfect market
integration, i.e. whenever congestion does not arise, the set of locational
(or zonal) prices is typically represented by means of a univariate time
series process. When congestion occurs, a multivariate time series
model, such as a vector autoregressive (VAR) or a vector error correction
(VEC) model is instead assumed. In the former case, prices are equalised
across zones, whereas in the latter, correlation among prices is expected
to be positive, albeit imperfect, due to common drivers (such as fuel
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prices, weather conditions) and because of relative scarcity in

neighbouring locations, as mentioned above.

Market integration has been assessed through various
approaches, such as testing the time dynamics in correlation between
price pairs (Pereira and Soares [2008] on European power exchanges), or
testing unit roots in price differentials [Zachmann 2008]. Granger
causality has been deployed to identify leader-follower relationships
among markets or market zones, as in Dempster et al. [2008] and in
Bunn and Gianfreda [2010]. In case unit roots are found in the time
series of electricity prices (DeVany and Walls [1999] being among the
few) or in fuel prices [Bunn and Gianfreda 2010, Bosco et al. 2010,
Gianfreda et al. 2016, De Menezes et al. 2016], the literature has resorted
to co-integration tests. Under the null hypothesis of co-integration, the
price differential between two locations is mean-stationary with a zero
mean, and there is no intercept in the long-term relationship between the
prices. In other words, the electricity prices at two locations only differ
by a random disturbance (conditional on exogenous covariates, such as
fuel prices and deterministic terms).

Thus, in testing market integration, previous works have only
implicitly recognised that price information from one location is useful
to understand and forecast prices in other locations. The extent of such
spatial effects, though, cannot be easily inferred from the existing
multivariate time series estimates on electricity prices. One reason is that
all locations in a VAR / VEC model are treated equally, regardless of
physical or “socio-economic” distance which in spatial econometrics are
handled through spatially-weighted matrices, improving efficiency, as we
will see in Section 3. Another issue is that time is unidirectional and
linear, whereas space has no obvious beginning and direction, and any
location can have more than one neighbour in a higher-dimensional
network.

As previously mentioned, in a structural model perspective,
spatial dependence among prices is ultimately due to spatial dependence
among price fundamentals. The main electricity price fundamental,
electricity demand, in theory is expected to be spatially dependent.
Spatial spillovers and spatial clusters can arise when proximate regions
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are characterised by socio-economic linkages. Similar life-styles and

imitative behaviours made easier by spatial proximity, as well as
information conveyed through migration flows can contribute to develop
a spatial correlation among regional electricity demand levels. Spatial
interdependencies may notably arise whenever the effects of regional
energy policies “leak” through regional borders, since e.g. consumers
may arbitrage away price differentials induced by location-specific
tariffs, or environmental externalities may affect electricity consumption
behaviours within the geographical reach of the external effects.

Another key instance of spatial dependence is found in wind
power generation and in wind speeds. Wind turbines are usually
clustered in wind farms or parks, since the wind resource tends to be
spatially concentrated. If two turbines are in a row, given the respective
wind direction, the power produced by a turbine that is downwind is
reduced by wake-induced turbulence effects created by the upwind
turbine [Ye et al. 2017]. Wake effects intensify with decreasing distance
between turbines, therefore it is essential to account for spatial
correlations between wind speeds or wind power generation from
different turbines within a wind farm. Because the underlying conditions
may differ dramatically from site to site, focusing on only the time
dimension would not allow to extrapolate predictions to sites that have
not been monitored yet and that are being considered for a new
investment. Moreover, failing to consider spatial correlations means that
forecasting errors made at a given time in a give site are correlated with
forecast errors at neighbouring sites in the following period [Tastu et al.
2011].

It must be noted that spatial correlations matter also when one
considers a coarser spatial resolution, as is the case with works taking the
aggregate power generated from a wind farm as the unit of analysis.
Evidence reported e.g. in literature reviews such as Lei et al. [2009]
found that outputs from wind farms spaced less than about 100 kms apart
are highly correlated, but such correlation vanishes when the distance is
beyond 200 km. On these grounds, one can envisage the geographical
distribution of wind farms that minimises the aggregate wind power
volatility, the so-called smoothing effect. This is a relevant issue in a
policy-making perspective, since lower variability in wind outputs
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mitigates the volatility of wholesale electricity prices as well as the

reliance on ancillary services.

In a longer term perspective, space matters also in influencing
decisions to invest in renewable energy generation facilities. Besides
geography-dependent insolation rates, the diffusion of photovoltaic
panels can be fostered by urbanization, which is expected to facilitate the
transmission of information between PV adopters and their peers, as well
as offering agglomeration economies in the form of a higher presence of
skilled workers in the PV sector, which reduces the cost of maintenance
and related services. At the same time, in urbanised areas scarcity of
space may deter PV installations.

3. Spatial econometric models
3.1 Introduction to spatial analysis

The last decades have been characterized by a considerable in-
crease of the research incorporating spatial dimensions into applied eco-
nomic modelling. Spatial analyses were first conducted in the fields of
regional economics and economic geography, in line with the idea that
“space matters” as stated more precisely by Tobler [1970] with the First
Law of Geography: “Everything is related to everything else, but near
things are more related than distant things”.

Accounting for the presence of spatial linkages is extremely im-
portant, in particular when looking at the implications of policies imple-
mented at any place to detect problems of a specific geographical unit.
The effects of these policies may spread beyond geographical boundaries
and affect also the conditions of neighbouring regions. Spatial economet-
rics, therefore, represents the set of alternative estimation approaches that
can be used when dealing with spatial data samples [Anselin, 1988]. In
particular, heterogeneity (heteroscedasticity) and autocorrelation (depen-
dence) are the main issues posed from the treatment of data series related
to geographical entities. These problems, common to any econometric
application, in the case of spatial data may require distinct treatments.
Spatial heterogeneity violates the Gauss-Markov assumption that a single
linear relationship exists across the sample data observations. If the rela-
tionship varies as we use different spatial units alternative estimation
procedures are needed to model this type of variation (random coeffi-
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cients, error compontent models, etc). Similarly, the spatial dependence ,

arising when the value assumed by a variable in a given location is corre-
lated with the value that the same variable assumes in another place or in
a set of other places, prevents to use traditional approaches based on a
one-way direction relationship among different geographical units. Ac-
cording to Anselin and Bera [1998], spatial autocorrelation occurs when
high or low values for a random variable tend to cluster in space (posi-
tive spatial autocorrelation) or locations tend to be surrounded by neigh-
bours with very dissimilar values (negative spatial autocorrelation).

Recently, the spatial analysis has been incorporated also into en-
ergy economics modelling since resources, consumption, and production
of energy are defined over time and space and therefore have a time as
well as a spatial dimension. In this regards, there are lots of applications
that should involve the use of spatial models as for example: patterns of
energy use across space, spatial externalities of energy production in
terms of the environmental affects, spatial clustering in exhaustible nat-
ural resources exploration activities, spatial structuring of electricity
prices, and so forth.

3.2. Modelling Space

Modelling Spatial dependence requires an appropriate representation of
relative spatial positions. When considering a sample of R spatial units,
the solution is given by a spatial neighbors matrix (W), that is a square
symmetric R x R matrix with the (i, j) element equal to 1 if spatial units i
and j are neighbors of one another (or more generally, are spatially relat-
ed), and zero otherwise. By convention, the diagonal elements of this
“spatial neighbors” matrix are set to zero. In the simplest form, the ele-
ment wj represents the spatial proximity based on the concept of binary
contiguity. If two spatial units have a common border they will be con-
sidered contiguous and will be marked with value 1. Conversely, if they
are not contiguous, their coupling will have a value of 0.

However, the simple contiguity measure has some limits: a) it does not
account for non-reciprocal interactions because of its symmetrical na-
ture; b) it does not account for other kind of interaction than geographi-
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cal proximity; c) it does not distinguish between different types of neigh-

boring regions, with regards to the distance or the morphology of the
border area (mountain, hill, plain) or, finally, to the length of the border
actually shared. To overcome the latter problem contiguity matrices of
higher order than the first can be used 3. Besides, it is possible to as-
sociate the contiguity matrix with a matrix of distances or with other ma-
trices that combine distance measurements with border lengths. In this
line, one can use the inverse of the distance between the centers (geo-
graphical, but also political or administrative) of spatial units and the
distance can either be expressed in terms of linear and road distance or in
terms of time distance, in relation to travel times. The matrix obtained in
this way, assigns to each pair of spatial units a different value that de-
creases with the distance to account for the stronger influence that closer
spatial unit may exert with each other.

The first and second limits are usually overcome by introducing mea-
sures of "economic contiguity” between spatial units, like commercial
exchanges (which would also distinguish non-reciprocal relationships) or
the degree of similarity in productive specialization. Finally, proximity
may account also for other types of distances such as cultural, linguistic
or administrative.

The best choice regarding spatial neighbors matrix is made taking into
account the research goals, that is ensuring that measures of proximity
included in the matrix are strongly exogenous respect to the variable ob-
ject of study.

The spatial neighbors matrices are usually transformed into “spatial
weight” matrices following the most common approach of the “row-
standardization”, consisting in dividing each row element by the sum of
all the elements in the row.

For example, a second order matrix identifies those areas that are
contiguous to regions showing the value one in the first order matrix.
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Row-standardized spatial weights matrix is particularly attractive be-

cause its elements can be interpreted as the fraction of total spatial influ-
ence on unit / attributable to unit j and, when weights are based on the
inverse distances, they decrease with increasing distances. In spite of its
popularity, row-normalized weighting has its drawbacks. In particular,
row normalization alters the internal weighting structure of the matrix so
that comparisons between rows become somewhat problematic. In view
of this limitation, an alternative transformation is represented by the sim-
ple scalar normalization consisting in multiplying each element of the
neighbors matrix by a single number (a0 -W). This procedure removes
any measure-unit effects but preserves relations between all rows of W.

3.3 The Exploratory Spatial Data Analysis to test spatial dependence

It is important to test for spatial autocorrelation when using data at the
region level because in presence of spatial dependence, regression analy-
sis of spatially distributed variables can lead to incorrect statistical infer-
ence when proper corrections for spatial effects are not incorporated in
the model specification [Voss et al., 2006].

Following Anselin [2005], exploratory spatial data analysis
(ESDA) represents a useful set of instruments to test for the presence of
spatial dependence. ESDA is a collection of techniques aimed to describe
and visualize spatial distributions; identify atypical locations or spatial
outliers; discover patterns of spatial association, clusters or hot-spots;
and suggest spatial regimes or other forms of spatial heterogeneity. Cen-
tral to this conceptualization is the notion of spatial autocorrelation or
spatial association, i.e., the phenomenon where locational similarity (ob-
servations in spatial proximity) is matched by value similarity (attribute
correlation). If either high or low values are found in a spatial unit and its
adjacent, it would be an instance of positive spatial autocorrelation. Spa-
tial clustering is said to occur with positive spatial autocorrelation
[Anselin et al., 2000]. By contrast, negative spatial autocorrelation would
occur if units with low levels for the variable of interest surround a spa-
tial unit with a high value. For those spatial units where no correlation
exists between variable’s values and their locations, the spatial pattern is
considered to exhibit zero spatial autocorrelation [Holt, 2007].
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There are several tests in the literature to verify the presence of

spatial autocorrelation.

The most common test for the existence of global spatial auto-
correlation is due to Patrick Moran and is usually referred to as Moran’s-
I statistic [1948]:

where x; represents the variable describing the phenomenon under study
in region i, u is the sample mean and wj; is the weight of a row-standard-
ized spatial matrix. The expected value of the Moran index (E(I)) is
equal to -1/(R-1). With R large enough the standardized I is normal dis-
tributed therefore the rejection of the null hypothesis of no spatial auto-
correlation implies the presence of spatial dependence. Values of I
greater than the expected value indicate positive spatial autocorrelation,
which means that regions with high (low) values tend to be located close
to other regions with high (low) levels. Values of I less than the expected
value indicate a negative association, and hence a tendency for dissimilar
values in nearby regions.

Local indicators of spatial clustering analysis consider the rela-
tionship between each region and its neighbors, identifying hot spots
(high-value clusters) and cold spots (low-value cluster). Among these
tests there are the Getis-Ord statistic [Getis and Ord ,1992; Getis and
Ord, 1995; Sokal et al., 1998], the Moran scatterplot [Anselin, 1996] and
the Local Indicator of Spatial Association LISA, [Anselin, 1995].

The Getis-Ord test refers to the concentration of values of the
variable of interest in the neighborhood of region i. The original statistic
is as follows:

with j #i

where wj; is the corresponding element of a non-standardized symmetric
binary weights matrix which attributes 1 to neighboring regions and 0 to
the others and to the pivot region. Once standardized, positive values of
G;j indicate spatial clustering of highly values around region i, while neg-
ative values indicate a cluster of regions showing low values.

The Moran scatterplot is given by a graph centered on the mean value of
the variable of interest x for a number of spatial units. The horizontal
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axis returns the standardized values of the variable (Z) while the vertical

one returns the spatially lagged value of the standardized variable (WZ)
[Anselin, 2005; Anselin et al., 2000]. The slope of the linear regression
line that runs through the scatter plot is the Moran’s-I coefficient
[Anselin et al., 2000]. If the points are equally dispersed between the
four quadrants this will indicate no correlation (the slope is zero). If,
however, there is a clear relationship, the Moran Scatterplot can be used
to distinguish different types of spatial autocorrelation depending on the
quadrant. High-high (upper right) and low-low (lower left) represent pos-
itive spatial autocorrelation (spatial clusters) and low-high and high-low
are negative spatial autocorrelation (spatial outliers) [Anselin, 2005;
Anselin et al., 2000].

Moran scanerpiot (Moran's | = 0.511)
x

Since Moran scatterplots do not assess the statistical significance of spa-
tial associations it is useful to associate this global indicator, and its
graphical representation, with a local autocorrelation indicator that is
able to measure interdependence for each of the regions concerned. The
Local Indicator of Spatial Association (LISA) effectively enables for
each spatial unit to associate a measure of the spatial association level
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with its surroundings and to assess its statistical significance The indica-

tor commonly used as LISA is the local version of Moran’s I statistic for
each spatial unit i:

A positive value for /; indicates spatial clustering of similar values (high
or low) whereas a negative value indicates spatial clustering of dissimilar
values between region 7 and its neighbours.

3.4 Spatial econometrics models: a taxonomy

The spatial econometrics literature distinguishes different ways
of modeling spatial interaction [Anselin, 1988]. Depending on the type
of interaction between observations of neighboring units, the estimation
may follow different approaches. In what follows we present some of the
model specification for a cross-section data context®.

. Spatial Autoregressive Models (SAR), when levels of the depen-
dent variable y depend on the levels of y in the neighboring regions (spa-
tial lag dependence). In this case, the formal model is:

where A is the spatial autoregression parameter, which typically has to be
estimated from the data, W is a predefined R by R spatial weighting ma-
trix, X is a vector of explanatory variables and ¢ is an independently and
identically distributed error term for region i with zero mean and vari-
ance o°. Wy represents the spatially lagged values of the dependent vari-
able accounting for the idea of spatial spillover within nearby regions.
The significance of A indicates the presence of spatial autocorrelation.
For an individual observation, the basic spatial lagged autoregression
equation is simply:

For panel dataset specifications, please refer to Elhorst (2010a, 2011).
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. Spatial Error Models (SEM), when error terms are correlated
across space (spatial error dependence). This situation may occur when
some determinants of the dependent variable omitted from the model are
spatially autocorrelated or when unobserved shocks follow a spatial pat-
tern. The resulting model is written as follows:

with v assumed to be normal with zero mean and variance ¢° 1.

. Spatial Durbin Models (SDM) containing a spatially lagged de-
pendent variable and spatially lagged independent variables.

In order to verify whether a spatial model is more appropriate to describe
the data than a model without spatial interdependences, the suggestion is
to run the Lagrange Multiplier test for a spatially lagged dependent vari-
able (LMlag) and for the spatial error autocorrelation (LMerr) using a
baseline non-spatial model [Anselin et al., 2006; LeSage and Pace, 2009,
2010]. The null hypothesis for these tests is the absence of spatial depen-
dence. The alternative hypotheses are, respectively, the presence of spa-
tial lag and spatial error dependence. Robust Lagrange-Multiplier tests
can also be performed to test for the existence of one type of spatial de-
pendence conditional on the other. Finally, the likelihood ratio (LR) and
the Wald tests can be performed to verify whether the SDM can be sim-
plified to the spatial lag model or to the spatial error model [Elhorst
2010a, 2010b, 2011].

Regarding the estimation procedures, it is important to remember that the
spatially lagged dependent variable (Wy) is correlated with the errors,
even when these are identical and independently distributed. In other
words, the spatial lag of the dependent variable should always be consid-
ered as endogenous. This means that the OLS estimation approach be-
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comes inadequate because producing biased and inconsistent estimators

(typically those deriving from simultaneity problems). Among the alter-
native methodologies, chosen to overcome these drawbacks, the most
widely used is the Maximum Likelihood (ML) estimation technique. In-
deed, under specific conditions?, all the classic properties of its estimator
(non-distortion, efficiency, and asymptotic normality) remain valid when
including spatially lagged dependent variables.

4. Reviewing the spatial econometric literature on electricity markets

Statistical modelling and forecasting in the restructured and liberalised
electricity industries concerns various variables, depending on the goals
of the interested parties. Wholesale market-clearing prices, fuel prices,
wholesale demand, wholesale generation from intermittent, non
dispatchable renewables (such as wind and photovoltaic), and the
diffusion trajectories of renewable energy sources have all been attracted
scholarly, business, and policy interests. Recently, literature reviews on
forecasting electricity prices through statistical methods have been
provided by Weron [2014] and Nowotarski and Weron [2017], whereas
statistical forecasting of electricity demand is the topic of the survey in
Hong [2014] and of chapter 3 in Weron [2007].

This section reviews the main existing applications of spatial
econometrics with a focus on electricity prices, electricity demand, and
residential PV uptake. Fuel prices and wind power forecasting are not
included in our picture. While fuel prices are determined in international
markets, and thus induce common dynamics among zonal markets in the
same country, the literature on forecasting wind speeds and power has
ignored spatial econometric models, although it has long made use of
spatial information, as mentioned in the Introduction. In the kriging
estimators used by Haslett and Raftery [1989], Lenzi et al. [2016] and

The conditions regard the differentiability of the function, the
existence of partial derivatives, and the existence of a positive and non-singular
covariance matrix.
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others, the non-diagonal entries of the covariance matrix of the error

term decline exponentially with the distances between wind turbine sites.
In Gneiting et al. [2006] and in Hering and Genton [2010], the location
and scale of the predictive distribution of wind speed at one site is
assumed to depend also on wind speeds at other sites.

Statistical modelling and forecasting the variables under focus
involve methodological dilemmas which we will briefly illustrate in each
subsection before providing details on the existing applications and
results. Issues to be solved in the econometric design include
measurement, spatial granularity, and the choice of the spatially-
weighted matrix.

As a general note, electricity market forecasting is performed
over various time horizons, from real-time to day-ahead, to longer
forward contracts, as well as monthly or annual averages when it comes
to demand and supply variables. In this context, short-term usually refers
to a range between few minutes and few days ahead, while medium-term
extends to a weekly horizon and long-term stretches from monthly, to
quarterly and annual. Short-term forecasting is specifically useful to
transmission system operators to ensure reliability, while being essential
also for power generating companies to shape their bidding strategies in
the shorter-term wholesale market segments. Long-term forecasting
helps making investment and planning decisions as well as allocating
resources to long-term contracts on both the supply or demand side.
While short- and medium-term forecasting relies on econometric models,
long-term forecasting is based on a detailed modelling of the system at
hand, whether economic (oligopoly or auction models in the case of
prices) or physical / meteorological (in the case of wind and solar
power), and is exposed to modelling risk, related to the tall challenge of
predicting regulatory and technological change.

Demand forecasting is a relatively mature paradigm; instead,
accurate short-term predictions of electricity prices are still rather
challenging to achieve, in spite of the striking progress documented in
comprehensive methodological surveys, such as the one by Weron
[2014]. Wholesale electricity prices display seasonalities (annual,
weekly, and within day), volatility clustering, skewness, jumps, spikes,
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and excess kurtosis. The uncertainty in forecasting wind power, solar

power, and electricity demand only add to the difficulties in predicting
wholesale electricity prices.

4.1 Electricity demand
4.1.1 Roots and issues

The electric power consumption in terms of kWh per capita is strictly
linked to countries development level. World Development Indicators
[World Bank, 2017] highlight a considerable difference in terms of per
capita electricity consumption between upper middle and lower middle
income countries that in 1971 were, respectively, 305.33 and 89.95 kWh
and in 2014 rise to 3533.37 and 769.5 kWh. In the same period, higher
income countries raised their consumption by an average annual rate of
2.6% while less developed countries showed an increase of 17.16%.

Since the seminal work of Houthakker [1951], that analyzed the
electricity consumption in Great Britain, several empirical studies have
been conducted with the purpose to find the main determinants of
electricity demand. Income level and electricity price, demography,
climate, industrialization, price, and availability of alternative energy
resources, together with standard of living have been indicated as the
main factors driving electricity demand in developed countries [Fisher
and Kaysen, 1962; Silk and Joutz, 1997; Alberini and Filippini, 2011;
Filippini and Pachauri, 2004; Flaig, 1990; Houthakker, 1980]. For
developing countries, instead, the degree of urbanization is an additional
covariate to capture further economic development characteristics
affecting residential electricity consumption [Holtedahl and Joutz, 2004].

The factors determining electricity demand can exercise short
and long term effects. The elasticities, usually calculated by means of
dynamic models, show that electricity may be in general treated as a
normal good with long-term price-elasticity values larger than short-term
ones [Atalla et al. 2017]. Some exceptions are found in the case of cross-
prices for substitute goods, such as natural gas [Fullerton et al., 2015],
because of difficulties in switching from one power source to another for
many types of appliances.
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At first, econometric analyses on electricity demand were mostly

performed at country level. However, from the 1960s several
governments started promoting regional development, in order to reduce
the existing disparities within countries, and great efforts were made to
support the local energy provision. This change in energy policies
implied a larger concern about analyses focused on a regional level
aimed to evaluate the effectiveness of regional measures and to identify
the main channels influencing local functions of consumption and
provision of electricity.

The early studies on regional demand for electricity followed
two contrasting hypotheses. On the one hand, regions characterized by
different socio-economic and climatic conditions were supposed to have
different needs in terms of electrical energy, both in the private
(households and firms) as well in the public sectors [Bernstein and
Griffin, 2006; Contreras et al.,, 2009]. The idea was that model
specification and estimation results could strongly differ among regions
within the same country. Hence, very often the studies on the electricity
demand were referred to individual regions. In this vein, Fullerton et al.
[2012, 2015] give some evidences for specific states of the US. On the
other hand, some studies, conducted on aggregate regional panel data
sets, found that price and income elasticities of electricity demand do not
vary across regions [Alberini and Filippini, 2011; Houthakker, 1980;
Hsing, 1994; Maddala et al., 1997 and Paul et al., 2009].

The presence of a spatial correlation between the consumption of
electric energy in different geographical locations has been long
neglected. However, recently, as mentioned in the introduction of this
chapter, empirical studies on energy economics recognized the
importance of including the spatial dimension into analyses dealing with
resources, consumption, and production of energy. Extending these
analyses to the spatial component finds a motivation in spatial spillovers
and spatial clusters in electricity consumption that may arise when
proximate regions are characterized by socio-economic linkages. In fact,
common life-styles, imitative behaviors or the presence of migration
flows may induce spatial autocorrelation between regional electricity
demands. Finally, spatial interdependences may be driven also by
regional energy policies affecting nearby regions. In all these cases,
ignoring the presence of spatial interdependence would lead to biased
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and inefficient estimates [Anselin, 2010; Anselin et al., 2008; LeSage

and Pace, 2010] of the determinants of the local demand for electricity.

The presence of a spatial interaction among nearby regions and
the need to account for these influences require the use of spatial
econometric procedures that, differently from the standard OLS or fixed
effects approaches, enable to separate direct effect of an independent
variable on the regional demand of electricity from those due to spatial
spillovers. Spatial interactions either may refer to the spatially lagged
dependent variable (i.e. the value of a dependent variable in a
neighboring region), the spatially lagged omitted variables (affecting the
error term) or the spatially lagged independent variables (see Section 3).

4.1.2 Literature review

A few empirical studies of electricity demand at regional level have
recognized the role of spatial interactions. Among them, Yaylaci et al.
[2011] use tools of ESDA in order to verify the presence of spatial
autocorrelation of electricity consumption among Turkish provinces in
2006. Results of their analysis, that considers adjacent provinces as
neighbors, reveal the presence of a positive spatial autocorrelation using
both global and local spatial local indicators (Moran’s-1 and Gi*(d)
statistics). Provinces belonging to hot spots are characterized by a high
degree of industrial activity and high population densities.

An attempt to test the presence of a spatial autocorrelation
following a spatial econometric approach, without considering any other
factors determining electricity demand, was done by Ohtsuka et al.
[2010] and Ohtsuka and Kakamu [2011] who observed the regional
electricity consumption for Japanese regions in the time interval
1992-2003. The authors used a spatial autoregressive ARMA model
(SAR-ARMA) in order to improve the forecasting of electricity demand
in Japan. Yet again, the spatial proximity considered in these studies is
based on the concept of a binary contiguity between regions and spatial
weight elements are obtained by a row-standardization procedure.

Among the studies that test the presence of spatial effects of the
residential electricity demand using a more complex model, i.e.
including the main determinants suggested by the energy economics
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literature, Yu et al. [2012] find that the SAR model specification
overperforms the SEM one. The authors control for gross regional
domestic production, population and energy prices and find a statistically
significant spatial correlation in energy consumption among Chinese
provinces over the period 2007-2009. In particular, they implement the
Gibbs sampling method based on Markov Chain Monte Carlo (MCMC)
and construct a Bayesian spatial econometric model to solve the potential
problem of heteroscedasticity driven by differences in terms of
geography, economy, society, science, technology, population, and
culture characterizing Chinese provinces.

Blazquez Gomez et al. [2013], by employing a spatial
autoregressive model with spatial autoregressive errors (SARAR),
estimate income and price elasticities of electricity demand testing also
for the presence of spatial effects. They control for socio-economic
factors, such as income, population and number of households,
electricity own price and substitute power sources price (i.e. natural gas)
as well as for climatic conditions. The analysis was referred to 46
Spanish provinces observed over the period 2001-2010. Lagrange
multiplier tests suggested that the SARAR model was an appropriate
specification as both spatial effects, spatial lag and spatial error, are
confirmed to exist. In addition, the authors analyzed also the impact of
the 2009 crisis on electricity demand by testing the effects of substantial
changes in disposable income. Results evidence the crucial role that
spatial effects had in determining differences in provincial responses to
the economic crisis, which give some insights to address regional energy
policies and to electricity companies planning their investments on an
intense activity of forecasting.

The last, in order of time, is a recent study by Akarsu [2017] that
used a dynamic spatial lag panel model to test for the presence of spatial
effects in the local electricity demand in Turkey. The author has based its
analysis on various datasets that differ for the length and the
geographical disaggregation level (provinces and regions) and controls
for gross domestic product, real electricity price, urbanization ratio,
heating and cooling degree-days and province/region fixed effects.
Results highlight the presence of spatial spillovers and, similarly to other
studies (Diabi [1998] for Saudi Arabia and Erdogdu [2007] for Turkey),
he finds both price and income short- and long-term inelasticity.
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4.3 Uptake of residential photovoltaic systems

4.3.1 Geographical clustering in residential photovoltaic panels
diffusion

The recent decades have been characterized by a worldwide deployment
of the renewable energy mainly driven by higher concerns for security of
energy supply, implications of climate change and the uncertainty given
by the variability of price in the liberalized energy market. Achieving
these goals requires both a deep reform of global and national energy
policies and an intense teamwork involving institutions, producers as
well as consumers of energy. To this end, the role played by
householders may be crucial. These, with an adequate legislative and
financial support, may change their habits undertaking more efficient
actions in terms of energy consumption. They may even contribute to
promote technological innovation by becoming self-producers of the
energy they need while mitigating the environmental impact of their
consumption activities.

In this line, the European Union by means of different Directives
(Electricity Production from Renewable Energy Sources 2001/77/EC and
Renewable Energy Directive 2009/28/EC) promoted a strong reduction
of carbon dioxide emissions, to reach by the middle of the current
century, establishing that 20% of the energy consumed by all member
states should come from renewable resources. In order to achieve this
result, several governments introduced market-pull policies favoring the
decarbonization by boosting renewable energies. Among the available
typologies, photovoltaic (PV) panels represent a valid system capable to
be installed by householders for domestic needs.

The empirical literature dealing with the uptake of PV panels
highlights the importance of market-pull policies and feed-in-tariff
schemes promoted by national and/or local governments. These resulted
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to be fundamental for the initial trigger of the PS system characterized by

high installation costs, above all for domestic applications.

Several studies have examined the channels and the factors
favoring the PV deployment in the domestic segment, i.e. families’
decision to install cells on their roofs, while less has been done for the
other two segments of this market, namely the non-domestic rooftops
and the ground-mounted. The latter usually feeds the higher voltage
distribution network while both the domestic- and non-domestic-rooftops
are mainly connected to consumers’ premises providing them directly the
required amount of electricity.

The empirical evidence on small-scale PV systems, namely the
residential uptake, in addition to market-pull policies [Cherrington et al.,
2013], focuses also on socio-economic, technical and geographical
factors suggested by energy economics [Westacott and Candelise, 2016;
Schaffer and Brun, 2015; Gooding et al., 2013; Richter, 2013; Kwan,
2012]. Among the economic factors, energy costs saving, influenced by
feed-in tariffs, self-consumption and lower installation costs, make it
particularly profitable to uptake PV panels. Moreover, household
disposable income, level of education and environmental concerns seem
to influence positively the turnaround to PV. There is evidence that PV
diffusion depends also on the degree of urbanization, with higher density
urban areas, facilitating information transmission between PV adopters
and their peers [Lutzenhiser, 1993; Wallace and Wang, 2006; Rode and
Weber, 2016; Bollinger and Gillingham, 2012], or ensuring a greater
presence of skilled workers employed in the PV system itself [Schaffer
and Brun, 2015]. On the contrary, some studies [Miiller and Rode, 2013;
Snape and Rynikiewicz, 2012; Snape, 2016] find that the likelihood of
installing PV is greater in less densely populated area, away from large
conurbations. Eshchanov et al. [2013] show that residents of urban area
have low opportunities of installing PV panels because of the
unavailability of sufficient space both on their rooftops and in the
neighborhoods. This uneven distribution of installations would not have
been the expected result if households’ choices were mainly the result of
market—pull policies (feed-in-tariff) and return on investment.

This evidence suggests the importance of geographical factors.
In particular, geography plays a key role for the solar exposition and the
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following average annual solar radiation detected by a region, both

affecting the efficiency and the profitability of PV installations [Schaffer
and Brun, 2015].

4.3.2 Literature review

Most of the empirical analyses, conducted at a regional or more
disaggregated levels (provinces or counties), shed light on the presence
of a spatial clustering in the residential PV system deployment,
confirming the importance of geographical proximity. Above all, this is
true for socio-technical factors, like peer effects and clusters of skills
together to the solar radiation exposition. Peer effects, in particular, can
be either active, when individuals persuade somebody else to turn to the
same energy power system, or passive when the decision is taken after
simply observing what neighbors do. While these effects are highly
localized, they tend to spread across adjacent regions arising spatial
spillovers. Consequently, ignoring the presence of a spatial dependence
in the residential decision to install PV panels may lead to inconsistent
results. In this line, a large part of the recent studies on the PV
deployment at local level are based on spatial analysis methodologies.

Dharshing [2017] finds strong peer effects and neighboring
spillovers investigating households’ solar panel installation as an
example of the dynamics of technology adoption in the domestic
segment of the market. The author considers a panel dataset including
almost one million of PV systems in 402 German counties over the
period 2000-2013. County-level spatial proximity is taken into account
by using a row standardized rook binary contiguity matrix. The presence
of a spatial dependence among neighboring counties is confirmed by the
results of the Moran’s-1 global indicator. The econometric analysis is
then performed through a spatial autoregressive and a spatial error model
showing the presence of a strong spatial dependence that goes beyond
pure socio-economic and demographic factors and settlement structures.
Similar results for Germany were also found by Schaffer and Brun
[2015] who, by means of a SAR panel model, found that PV diffusion
varies among counties due to different solar radiation expositions and
neighborhood effects because of an uneven diffusion of specified craft
skills and/or intermediary agents.
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The UK context has been widely analyzed, too. Richter [2013],
investigating for the social learning determinants of PV installations,
found that passive peers, i.e. the observation of local installations,
strongly influenced the dynamics of further installations at a post-code
areas level of geographical disaggregation. The author underlined also
the necessity to account for the presence of spatial spillovers between
adjacent areas. In this view, Snape [2016] checked for the presence of
spatial effects by means of a descriptive analysis, using a mixed strategy
based on quantitative data on PV adoptions and qualitative information
on energy policies over the period 2010-2015. The use of a global spatial
indicator (Moran’s-I index) proves the presence of a positive spatial
autocorrelation at post-code district level. The local indicators (LISAs),
instead, describing the geographical position and the strength of the
clusters, site the clusters of high intensity capacity in the southwest of
England and highlight the emergence of a positive spatial autocorrelation
also in the east of England. The analysis confirms the presence of low-
low clusters around large cities like London, Birmingham, Manchester
and Liverpool.

Finally, the spatial autocorrelation of PV installations appears to
increase over time after the introduction of feed-in-tariffs. Balta-Ozkan et
al. [2015b] employ a spatial econometric model to perform a
comprehensive analysis of the determinants of domestic PV deployment
in British regions. Their analysis includes a large number of explanatory
variables accounting for financial constraints (per capita income), density
(population and house density), environmental conditions (share of
domestic and industrial emissions in total emissions) electricity demand
and solar irradiation. The presence of a positive spatial dependence
between neighbors is confirmed by the outcome of the Moran’s-1 test.
The authors use an inverse distance weight matrix assuming that the
spatial dependence is inversely related with the distance between
regions. According to the result of the spatial autocorrelation test, they
follow a general-to-specific approach [Elhorst, 2010a, 2010b] in order to
identify the most appropriate spatial model specification. The Lagrange
Multiplier test indicates that the Spatial Durbin model (SDM) may be
properly used to describe the PV deployment in British regions and
significant spatial spillover go through both the dependent variable (PV
uptake) and the explanatory variables. In order to account for potential
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endogeneity bias, a generalized spatial two-stage least squares

procedures (GS-2SLS) is estimated using as instruments the spatially
lagged explanatory variables. Results show that SDM and GS-2SLS are
similar suggesting the presence of spillovers between neighboring
regions. This result is obtained by running spatial correlation tests based

on Lagrange Multiplier statistics as suggested by Anselin [1988] and
LeSage and Pace [2009].

5. Conclusion and open issues

In spite of the inherently spatial nature of most activities in the electricity
industry, which stimulate the interest of policy-makers and private
decision-makers alike, the econometric literature has so far relied almost
exclusively on a time series approach to estimation and forecasting. This
chapter restores the role that spatial dependence deserves as a fruitful
interpretive concept in the field of electricity market studies. As shown
by the reviewed evidence, spatial econometric models can ameliorate the
economic understanding of price-setting, demand, and technological
diffusion dynamics in the electricity industry, while improving the
forecasting performance of pricing models over time horizons that are
relevant for ensuring reliability in electricity transmission and efficiency
in bidding strategies. The chapter has also explored some practical issues
that applied researchers can face in their econometric design, such as
measurement issues, the spatial granularity of the data, the criteria for
choosing the spatially-weighted matrix, and the setup and intepretation
of the statistical tests that are essential to evaluate the presence of spatial
dependence in the data under analysis and discriminate among different
spatial model specifications.

Just like any field in its growth stage, spatial energy
econometrics still needs to tackle some open methodological issues. A
theme so far underplayed in the empirical literature on wholesale
electricity prices is the simultaneous inclusion of serial and spatial
correlation terms in the same model. Douglas and Popova [2011]
implicitly did so by using the day-ahead price as a proxy for the
information available before the spot price quotation, while the approach
taken by Maciejowska and Weron [2015] is more effective, since their
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estimated factors capture the common drivers between observation units

in both the space and the time dimensions. Yet, some more articulate
pattern of serial correlation may have to be allowed as in Burnett and
Zhao [2017].

Notably, specifying a serial correlation structure alongside the
spatial correlation terms could allow to inspect the issue of leader-
follower relationships between power generating companies or locations.
Leader-follower dynamics are epitomised by the role that the German
electricity market may be playing in mittel-Europa, as well as by
companies that possess informational advantages on import/export
balance by running assets on both sides of a transmission link (e.g.
Electricité de France in the plant-level VAR analysis performed by Bunn
et al. [2015]). Identifying leading companies or locations at a fine spatial
resolution would be very useful, as it would provide information on
which nodes in the network are more critical for the competitive
functioning of the electricity market.

Leader-follower relationships are typically explored through the
aid of VAR models. As it is well known, recovering the structural VAR
coefficients from the reduced form VAR estimates requires some
restrictions on the causal chain among the variables. Unlike in
macroeconomics, theoretical models of nodal electricity pricing under
perfect competition are unable to suggest an expected causal chain, as a
consequence of Kirchhoff's law. In the same vein, the well-known
theoretical result by Bushnell and Stoft [1996] that optimal nodal prices
reflect the average nodal prices at neighbouring locations is yet another
instance of the reflection problem highlighted by Manski [1993].
Theoretical models explicitly assuming a leader-follower dynamics, such
as the Stackelberg model, while seldom used [Chen et al. 2006, Lee
2014], have not been specified at the nodal scale as they are essentially
framed for a longer-term assessment of electricity planning and
competition policies (see Neuhoff et al. [2005] and the review in Ventosa
et al. [2005]). Identification of the likely leader is then left to the
inspection of business and regulatory documents, in a qualitative fashion
that needs to be reinforced by sound quantitative testing. In this respect,
graph-based causality identification methods recently introduced could
be helpful. In Moneta et al. [2013], the higher-order moments of the non-
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Gaussian VAR residuals are exploited to obtain the restrictions needed to

compute structural VAR coefficients from the reduced-VAR ones, with
no need for a priori theoretical restrictions. Extensions of this
methodology to allow for spatial autocorrelations would be extremely
valuable in this respect.

Another critical point is the endogeneity due to simultaneity,
omitted variables or measurement errors, considered among the main
sources of inconsistency in the econometric estimations. The progress of
spatial econometrics offers different strategies to overcome these
problems. To obtain consistent results from spatial lag models with
additional endogenous variables it has been proved that is possible to run
a two-stage least squares, including the lower orders of the spatial lags of
the exogenous variables [Anselin and Lozano-Gracia 2008; Dall’Erba
and Le Gallo 2008]. Kelejian and Prucha [2007] consider a general
spatial regression model that allows for endogenous regressors, their
spatial lags and other exogenous regressors. Their model represents one
of the equations of a simultaneous system but they show that it is
applicable also to tackle the general problem of endogeneity. Fingleton
and Le Gallo [2010] suggest the use of an augmented spatial Durbin
model to be estimated using a 2-stage least square (2SLS) and SHAC
procedure in order to account for endogeneity due to omitted variables in
a model that presents also spatial dependence in the error terms.

Finally, it is worth suggesting that spatial econometrics could
find valuable applications in further areas of interest for energy
economics and policy. Novel estimates of spatial econometric models
have been recently published by Sunak and Madlener [2015, 2016] on
the impact of wind farm positioning and visibility on housing prices in
Germany; by Lv et al. [2017] on energy efficiency in a sample of
Chinese regions, with the goal of assessing spatial spillovers; by Liu et
al. [2017] on neighbor effects in the adoption of hybrid-electric vehicles
in the USA; and by Bowen and Lacombe [2017], who take spatial
autocorrelation into account in assessing the impact of renewable
portfolio standards on renewable generation at the state level in the USA.
In a yet unpublished paper, Orea et al. [2016] study the cost functions of
Norwegian electricity distribution companies, illustrating one more field
of application. In the latter, in particular, spatial correlation allows to
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solve an omitted variables problem caused by the lack of data on weather

conditions that are influential on the operation of the distribution grid
and, in turn, on the costs of providing the service. One remarkable gap in
the spatial econometric literature is represented by wind and solar power
modeling and prediction. Existing studies reviewed by Kusiak et al.
[2009] face the limitations of time series econometrics in dealing with
space, namely, they impose a directionality (past/future) in a VAR logic
that space does not have, whereas forecasting in Ye et al. [2017] relies on
a physical model. To our knowledge, the only application of spatial
econometrics to wind power has been published by Croonenbroeck and
Ambach [2015].



