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Abstract

Evolutionary theories of economic change have identified as the two main drivers of the

dynamics of industries the mechanisms of market selection and of idiosyncratic learning by

individual firms. In this perspective, the interplay between these two engines shapes the

dynamics of entry-exit and the variations of market shares and, collectively, the patterns of

change variables such as average productivities, size and growth rates.

In the following contribution we shall address the construction of an agent based model

that tries to take into account, via simple behavioural rules, the most relevant micro stylised

facts, with particular attention devoted to the analysis of the condition under which fat tail

distributions emerge.
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1 Introduction

Evolutionary theories of economic change have identified as the two main drivers of the

dynamics of industries the mechanisms of market selection and of idiosyncratic learning by

individual firms. In this perspective, the interplay between these two engines shapes the

dynamics of entry-exit and the variations of market shares and, collectively, the patterns of

change variables such as average productivities, size and growth rates.

Learning (what in the empirical literature is sometimes called the within effect) entails a
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various processes of idiosyncratic innovation, imitation, changes in technique of production.

Selection (what in the empirical literature is called the between effect) is the outcome of

processes of market interaction where more competitive firms gain market shares at the

expense of less competitive ones. A stream of analysis – from the pioneering work by Ijiri

and Simon (1977) all the way to Bottazzi and Secchi (2006a) – studies the result of both

mechanisms in terms of the ensuing exploitation of new business opportunities, captured by

the stochastic process driving growth rates.

A second stream, including several contributions by Metcalfe (see among others Metcalfe

(1998)), focuses on the processes of competition/selection often represented by means of

a replicator dynamics where shares vary as a function of the relative competitiveness or

“fitness”.

Finally, many evolutionary models unpack the two drivers of evolution distinguishing between

some idiosyncratic processes of change in the techniques of production, on the one hand, and

the dynamic of differential growth driven by differential profitabilities and the ensuing rates

of investment (such as in Nelson and Winter (1982)). Or, on the other hand by an explicit

replicator dynamics, (such Silverberg et al. (1988) and Dosi et al. (1995)).

Whatever the analytical perspective, the purpose is to account for one or several of the many

empirical regularities that emerge from the statistical analysis of the industrial dynamics (

for a critical survey, see Dosi (2007)). In particular, the stylized facts include:

• persistent heterogeneity in productivity and all other performance variables;

• persistent market turbulence due to change in market shares and entry-exit phenomena;

• fat tail distribution of growth rates;

In the following contribution we shall address the construction of an agent based model

that tries to take into account, via simple behavioural rules, the main findings discussed

above, with particular attention devoted to the analysis of the condition under which fat

tail distributions emerge. In particular in section 2 we will briefly summarize the empirical

stylized facts, in section 3 we will discuss the main theoretical models oriented at explaining

the shape of the firm growth rate, in section 4 we will present our model, in section 5 the

related analysis of properties and results, in section 6 our conclusions.

2 Empirical stylised facts: productivity and size

During the last two decades, many studies in industrial organization and particularly in in-

dustrial dynamics have pointed out the emergence of a rich ensembles of stylised facts related

to productivity and size distribution. In the next section we will explore in details the related

findings.

2.1 Productivity distribution

Firstly, as extensively discussed in Doms and Bartelsman (2000), Syverson (2011), Dosi

(2007) and Foster et al. (2008) among many others, productivity dispersion, at different level

of disaggregation, is a rather striking and robust phenomenon. Secondly, the heterogene-

ity across firms shows to be persistent over time, as mainly described in Bartelsman and

Dhrymes (1998), Dosi and Grazzi (2006) and Bottazzi et al. (2008) with autocorrelation

coefficients in the range 0.8−1. A clear-cut evidence is provided in figure 1.a, that illustrates

the dynamic of labour productivity. The distribution shows a wide support that goes from

1 to 5 in log terms suggesting huge dispersion in terms of the ability to transform input in

output among producers. The distribution is stable over time and the support, as suggested

by the high autocorrelation coefficient, does not shrink. Table 1.b describes how strong is
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the persistence nature of productivity level. These findings, robust to the use of parametric

and non-parametric tools, empirically discard any idea of a unified production process among

firms, where a unique, optimal combination between inputs and output is in place.

An other relative interesting feature is the asymmetry of the distribution at sectoral level.

Dosi et al. (2012) suggest how the thicker left tail narrates an history where low productive

firms persistently survive in a market structure characterized by an high degree of tolerance.

Also the asymmetry, as the wide support, is time invariant, suggesting that there is no trace

of convergence toward higher degree of selection in the competitive arena.

A some how less explored phenomenon related to the dynamic of productivity is the

double exponential nature of its growth rate distribution. Extensive evidence is provided in

Bottazzi et al. (2005) and Dosi et al. (2012). Figure 1.c supplies a better visual explanation.

The double exponential nature of growth rate in productivity, which in a log-log scale reads

as a Laplace distribution, hints at an underlining multiplicative process that determines ef-

ficiency performance.

2.2 Size distribution

The power-law nature (Pareto or Zipf law according to whether the slope of the straight

line, in a log-log plot, is less than 2 or equal to 1 respectively)1 of the firm size distribution,

has been investigated by many authors2 since the pioneering work by Simon and Bonini

(1958), where a modified version of the Gibrat Law (that per se converges to a log-normal

limit distribution), with a constant rate of entry is explored as generating mechanism of

Pareto distribution in size. The authors interpret the parameter of the Yule distribution,

which asymptotically converges to a Pareto distribution, as the rate of entry in a given

industry. Hence it provides a degree of concentration in the market. But, differently from

the other empirical stylised facts previously discussed, the Pareto distribution is not robust

to the level of disaggregation. Particularly, being the Pareto a scale free distribution, in

principle it should be scale invariant, or equivalently, it should be detectable irrespectively

of the considered level of aggregation. Bottazzi et al. (2007), Dosi et al. (2008) find that

the size distributions fairly differ across sectors in terms of shape and fatness of the tails.

Technological factors, the cumulative process of innovation, the predominance of process

or product innovation strongly affect sector specific size distribution (Marsili, 2005). It

seems that the empirical findings of the Zipf (Pareto) law distribution is a mere effect of

the aggregation as already discussed in Dosi et al. (1995). Nonetheless, the skewness of the

distribution, due the larger presence of small units relative to big units, seems to be a rather

robust phenomenon also at a sectoral decomposition level (see figure 1.d).

A huge empirical literature testifies the emergence of Laplace distribution in growth rates.

A typical empirical finding is illustrated in 1.e. Differently from the Pareto distribution,

this applies across different levels of sectoral disaggregation, across countries, over different

historical periods for which there are available data and it is robust to different measures of

growth, e.g. in terms of sales, value added or employment, (for more details see Bottazzi

et al. (2002), Bottazzi and Secchi (2006a), Bottazzi et al. (2008) and Dosi (2007)).

Finally, how the level and the size growth rate are related one to each other? Since Stanley

et al. (1996) an extensive literature of empirical papers found a negative relation between the

variance of growth rates and size (see Sutton (2002), Lee et al. (1998), Bottazzi and Secchi

(2006b)). An illustration of the phenomenon is provided in figure 1.f. The underlining idea is

that firms can be described as a collection of independent units, each of them characterised

by a growth process. The higher the firm size, the higher the number of its components

1See Newman, 2005 for a succinct overview.
2See Stanley et al., 1995 and Axtell, 2001 for US manufacturing data.
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(plants, departments); hence under the assumption of independent growth processes for each

of the unit, according to the CLT, the variance of the growth rate decreases proportionally

to the inverse square root of size.

2.3 Market turbulence

As discussed in Dosi et al. (2008), the emergence of the above mentioned invariances in the

market structure, that clearly depict a puzzling idea of some sort of coordination, coexists

with the occurrence of a persistent change in the dynamic of market shares mainly due to

entry-exit phenomena. This persistent turbulence, due to entry-exit flows, with changes in

incumbents market shares are well discussed in Baldwin and Rafiquzzaman (1995) and Doms

and Bartelsman (2000). Firms do not maintain a static position in the market arena: they

benefit from period of expansion and they are worn out by severe contractions, where this

may even occur anti-cyclically with respect to the trend of the related industry. Bartelsman

et al. (2005) reports a turnover rates around 15%-20% across countries. Additionally entry

and exit cross-correlate. They suggest that cross-correlation hints at a phenomenon of “cre-

ative destruction” where obsolete firms are replaced by newer one, but without significantly

affecting the total number of firms in each time period. The responsible for the big turbu-

lence are smaller and younger firms that challenge the market arena, where 20% − 40% of

enters die in the first two years and only 40% − 50% survive beyond the seventh year in a

given cohort. It means that to an high entry rate corresponds a low degree of penetration:

high probability of entry but low probability of surviving. Finally, weak empirical support

has been finding for profitability as a key variable in the determination of the entry choice

(for a detailed survey on entry stylised fact see Geroski, 1995).

The aim of this paper is building a truly simple evolutionary process able to reproduce

the listed robust empirical findings that, to summarize, comprise: (i) heterogeneity, (ii)

persistence and (iii) asymmetry related to the productivity distribution, (iv) skewness and

(v) Laplace shape respectively for the level and the growth rate of the size distribution, (vi)

negative variance-size relation, (vii) market turbulence.

3 Theoretical interpretation

In this section we will argue upon the theoretical reasons under the emergence of the above

mentioned ensemble of stylised facts discussing more in depth the most relevant theoretical

models in the literature that try to replicate at least one of the proposed stylised fact. After

all, paraphrasing Ijiri and Simon (1977), stating that an economic variable is distributed

according to a given distribution “would appear, in common sense terms, to be less an ex-

planation than a relocation of the mystery”.

The introduction of longitudinal micro-level data has actually strongly broken down the

paradigm of the existence of a representative firm whose increases in productivity derives

from the shift of the aggregate production function common to all firms. The why of this

persistent heterogeneity across firms has been investigated by many contributions. The en-

visaged reasons span from internal firms factors as capabilities, managerial practices, labour

conditions, innovation and R&D, learning by doing to environmental market conditions as

different degrees of competition, spillover and regulation.

In theoretical models like the ones by Jovanovic (1982), Ericson and Pakes (1995), Hopenhayn

(1992a), Hopenhayn (1992b) and Pakes and Ericson (1998) there is the explicit attempt to

link heterogeneous productive firms with performance, selection and survival of the “fittest”

(we would say from an evolutionary perspective). Dosi et al. (1995) and Bottazzi et al. (2001)
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(a) Source: Dosi et al. (2013)

Empirical distribution of labour productivity

(b) Source: Dosi and Grazzi (2006)

AR(1) coefficients for Labour Productivity in levels and

first differences. Dataset: Istat Micro.1.

(c) Source: Dosi et al. (2012)

Tent shape productivity growth rate.

Dataset: Istat Micro.3

(d) Source: Dosi et al. (2008).

Skewness in the size distribution. Dataset:

Fortune 500

(e) Source: Bottazzi and Secchi (2006a).

Tent shape size growth rate. Dataset: Istat Micro.1

(f) Source: Bottazzi and Secchi (2006b).

Variance-size relation. Dataset: Pharmaceutical

Industry (PHID).

Figure 1: Empirical stylised facts on productivity and size distribution
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define this stream of literature as “rational evolutionary models”. The evolutionary aspects

lies in the idiosyncratic productivity process that leads more productive firms to expand

their own capacity, or equivalently their market shares, and less productive firms to shrink

their weight in the market up their death. An inherent process of selection that reward the

more efficient and penalize the less efficient is in act. These models, at a first glance distin-

guishable in passive (as Jovanovic (1982)) and active (as Ericson and Pakes (1995)) learning

models, address issue as growth/death rates conditional on age, the dependence or not of the

current size on the initial one, the entry-exit rate in equilibrium. The “rational” attributes

stems from the fact that all of them are characterized by profit-seeking maximizing agents

over an infinite time horizon that can in each time step decide or not whether to stay in the

market according to their technological rational expectation. Furthermore, the idea that the

selection mechanism acts so well that every observed variable is an equilibrium one, is really

demanding.

Conversely, according to the evolutionary perspective, the micro-patterns of the industrial dy-

namic are the inherent outcome of two processes of learning and selection among boundedly-

rational agents. Upon those mechanisms, the macro regularities emerge as the result of the

continuum coupling of change and coordination. Models like the ones proposed in Nelson and

Winter (1982), Silverberg and Lehnert (1993), Dosi et al. (1995), Dosi et al. (2000), Bottazzi

et al. (2001) and Winter et al. (2003) are some different and complementary examples of the

evolutionary-modelling approach. Evolutionary models that address the pattern of industry

evolution with particular reference to the learning and selection process, can be subdivided

into three different categorizations: [1] the group of models that mainly investigate the pat-

tern of firm growth as a process of cumulation of learning opportunities (from Ijiri and Simon

(1977) to Bottazzi and Secchi (2006a)) folding together the two different processes; [ii] the

group of models that unpack and treat separately the two processes (Silverberg et al. (1988)

and Dosi et al. (1995)), [iii] the group of models that mainly focus on the selection process

(see Metcalfe (1998) for an extensive discussion).

Besides productivity, size is the other variable of interest, in both levels and growth rate.

Related to its scale invariant structure, Pareto distributions suggest that the industrial sys-

tem is only the results of interaction, without any role played by the firm individual behaviour

and the institutional-external factors. As above discussed, being the pure power law shape

not robust across different level of disaggregation, and revealing to be very sector-specific,

we will concentrate our focus on a briefly discussion of theoretical models focused on growth

rate dynamics, and particularly to the strikingly robust empirical findings of fat-tail growth

rate distribution.

Firms grow and decline by relatively lumpy jumps which cannot be accounted by the cumu-

lation of small, - “atom-less”-, independent shocks. Rather “big” episodes of expansion and

contraction are relatively frequent. More technically, this is revealed by fat tail distributions

(in log terms) of growth rates. What determines such property?

In general, such fat tail distributions are powerful evidence of some underlying correlation

mechanism. Intuitively, new plants arrive or disappear in their entirety, and, somewhat

similarly, novel technological and competitive opportunities tend to arrive in “packages” of

different “sizes” (i.e. economic importance). This is what Bottazzi (2014) calls the bosonic

nature of firm growth, in analogy with the correlating property of a family of elementary

particles – indeed the bosons –.

In the literature one of the first model that addresses the issue of size growth rate is proposed

by Ijiri and Simon (1967). Starting from a cumulative process for firms size, the authors de-

compose the total growth rate as the sum of an idiosyncratic component and an industry

time-variant component. The growth rate at a sectoral level is assumed to be constant, as

the initial size of the firm. Finally the idiosyncratic shock is modelled as an AR(1) process
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capturing [i] the independence of growth rate from size (Gibrat Law), [ii] one-period autocor-

relation of growth rates (or single period Markow process), [iii] a mean reversion behaviour.

The growth rate is described as the sum of independent micro-shocks. The size path turns

out to be a random walk model with a drift.

In turn, firm specific increasing returns in business opportunities, as shown by Bottazzi

and Secchi (2003) are a source of such correlations. In particular, the authors build upon

the “island” model by Ijiri and Simon (1977) and introduce the hypothesis of path-dependent

exploitation of business opportunity via a Polya Urn scheme, wherein in each period “success

breeds success”. It is a two step model, where in the first step an assignment procedure of the

fixed number of business opportunities is realised. In the second step, these business oppor-

tunities act as source of growth rate. The dynamic of firms growth rate is still a Gibrat-type

but with the strong difference that the number of opportunities M are not assigned with a

constant probability 1/N , but proportionally to the number of opportunities that in each

period the firm already has. At each time step a micro-shocks of type i ∈ 1, ..., N is extracted

from an urn. Once it is extracted the ball is replaced and, additionally, a new ball of the same

colour is introduced. This implies that, once one type i has been extracted, the probability

of being re-extracted increases. This procedure is repeated M times, the number of the total

business opportunities. Indeed this cumulative process is at the core of the emergence of fat

tails distributions. The authors demonstrate that when N and the ratio M/N increase, the

limit distribution of this scheme is Laplace distributed, and this occur independently from

the distribution function of the shocks. Their explanation of the tent shape relies on the idea

that a big chunk of microshocks M are concentrated in few firms N . Being the growth rate

the sum of micro-shocks, in order to avoid the possibility of an infinite variance, is necessary

that the micro-shocks hit the firms with infinitesimal variance.3 The last remark is that the

assignment procedure occurs once a year: dynamic increasing returns displace in space, as

a cumulation of many shocks in few firms, but never in time. It turns to be rather difficult

imagine that firms update their expertise every year, when the urn is open.

Our conjecture, however, is that spatial cumulative processes are only one of the drivers of

the apparent correlations underlying the “tents”. Indeed, we suggest that a rather large en-

semble of evolutionary processes, characterized by different forms of idiosyncratic (i.e. firm-

specific) learning and competitive interactions yields the observed distributions of growth.

This is the conjecture we are going to explore in this work.

The value added of this work is hence two-fold. By far in the literature there have been

attempts to address learning and selection separately. Our contribution mainly means to

capture the two footprints of industrial dynamics together, wherein heterogeneous produc-

tivity and fat tail distribution of growth rated coexist.

4 The model

The model is an evolutionary agent-based model microfounded upon simple behavioural-

heuristics. The absence of any rational technological expectation is intentionally pursued.

The most part of human decisions, and among them economic decisions as putted by Gigeren-

zer and Selten (2002) are made under low degree of information, time pressure, uncertainty

and low computational effort. For these reasons the low of motion that govern our economy

are not derived from the profit seeking maximizing agents. They are conversely, empirically

grounded.

The three processes that takes place in the market are learning, selection and entry. The

3Also the model by Buldyrev et al. (2007) finds its root in Ijiri and Simon (1977), and attempts to find those

exponential mixtures of Gaussian distributions able to reproduce the fat tail properties of the observed growth

data.
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model, as we will show, is able to provide a rich ensemble of stylised facts of the pattern of

industrial evolution.

4.1 Idiosyncratic learning process

We build upon a simplified version of Dosi et al. (1995) whereby learning is represented by

some multiplicative stochastic process upon firms productivity or more generically “level of

competitiveness” ai of the form:

ai(t) = ai(t− 1)(1 + θi(t)) (1)

where the θi(t) are the realization of the firm-specific process. Formally θi are realization of a

sequence of random variables {Θi}Ni=1 where N are the fixed number of firms. This equation

aims to capture the dynamic of capabilities formation within each firm. According to the

emerging-capabilities literature (see Teece et al. (1994)) firms stuck in their attitude to do

innovation, searching, problem solving and so on. The internal capability structure reflects

into the external productivity dynamics, embedded in the ability to be more competitive

(lower prices via process innovation) or to introduce new products. Different capability

structures are actually considered as the main source of heterogeneity among firms. The

choice of a multiplicative process to model the dynamic of productivity is basically meant

to grasp its persistent heterogeneous nature across firms and it turns to be a Gibrat-type

dynamic not as usual in size but in the level of competitiveness.

We experiment with different learning processes:

• θi(t) is drawn from a set of possible alternative distributions namely Normal, Lognor-

mal, Poisson, Laplace and Beta, namely a Baseline Regime;

• θi(t) = 0 under Schumpeter Mark I ;

• θi(t) = πi(t)

(
ai(t− 1)∑

i ai(t− 1)si(t− 1)

)γ
under Schumpeter Mark II, where πi(t) is the

same draw as under the Baseline Regime

At one extreme, in the first case, incumbents do not learn after birth. Advances are only

carried by new entrants. At the opposite extreme, in the third case, incumbents do not only

learn, but do it in a cumulative way so that a “draw” by any firm is scaled by its extant

relative competitiveness. This captures what Paul David, quoting Robert Merton, calls the

“Matthew effect”:

“For unto every one that hath shall be given, and he shall have abundance: but from him that

hath not shall be taken even that which he hath.” (Matthew 25:29, King James Version)4.

Finally the Baseline Regime is the “prototypical” scenario upon which we will perform ex-

tensive experiments.

4.2 Market selection and birth-death processes

Competitive interactions are captured by a “stochastic quasi-replicator” dynamics:

∆si(t, t− 1) = Asi(t− 1)

(
ai(t)

āt
− 1

)
(2)

where:

āt =
∑
i

ai(t)si(t− 1) (3)

4For more details see Dosi and Sylos Labini (2007)
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where si(t) is the market share of firm i which changes as a function of the ratio of the firm’s

productivity (or “competitiveness”) to the weighted average of the industry. It is a “quasi-

replicator”since a genuine replicator lives on the unit simplex. The“quasi”one may well yield

negative shares, in which case the firm is declared dead and market shares are accordingly

recomputed. Being A an elasticity parameter that captures the intensity of the selection

mechanism operated by the market, the death rule implies that whenever it is weak, firms

survive irrespectively of their market shares (fitness) and their competitiveness. However,

empirically, firms with strikingly low relative competitiveness do die even in environments

characterized by low degree of competition. Concerning equation 2 we shall study the effect

of different degrees of market selectiveness, as captured by the A parameter. In that, note

that the competitive process as such induces ex-post correlation in growth rates: the growth

of the share of any one firm induces the fall of the total share of its complement to one!

Finally, entry of new firms occurs proportionally to the number of incumbents present in the

market:

E(t) = ω(t)N(t− 1) (4)

where E(t) is the number of entrants at time t, N(t − 1) is the number of incumbents in

the previous period and ω(t) is a random variable uniformly distributed on a finite support

(which in the following, for simplicity,we assume drawn from a uniform distribution). The

idea that the number of entrants is proportional to the number of incumbents is strongly

empirically verified (see e.g Geroski (1991) and Geroski (1995) that finds a significant cross-

correlation between entry and exit, but also the preferential attachment scheme in Buldyrev

et al. (2007)). The number of firms at each time steps is maintained constant, that is the

number of dying is offset by an equal amount of rising firms.

The productivity attributed to the entrants follows the same incumbent rule, according to

the Market regime where it takes place, multiplied by the average productivity in the market.

What happens is that entrants productivity diverges from the average market productivity

of a stochastic component, that is again a random extraction from alternative distributions

(Normal, Lognormal, Poisson, Laplace and Beta):

aj(t) = (1 + θj(t))
∑
i

ai(t)si(t− 1) (5)

where θj(t) is a random variable which parametrizes barriers to learning by entrant, or

conversely the advantage of “newness”.

4.3 Timeline of the events

• There are N initial incumbent firms. They have at time 0 equal productivity (but in

the Schumpeter Mark I regime) and equal market shares .

• At the beginning of each period, if not under regime Mark I, firms learn according to

the dynamic of the specified process on productivity.

• Firms acquire or loose market share according to the quasi-replicator.

• Firms exit the market according to the rules of death: si(t) ≤ 0.

• Market shares growth rate are calculated.

• The number of entrants is drawn as a function of the total number of firms at the

beginning of the period, and market shares of incumbents are adjusted accordingly.

5 Model properties

Our conjecture is the the replicator dynamics put in act a mechanism of correlation equiv-

alent to the Polya urn mechanism. In particular we can read the stochastic replicator as a
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Value

Number of firms 150

Number of time steps 500

Number of MC runs 50

Initial productivity 1

Initial market share (1/N) 0.006667

Age Entrants 1

A 1

γ 1

Beta(β1, β2) [1, 5]

Normal(µ, σ) [0.05, 0.8]

Lognormal(µ1, σ1) [−3.5, 1]

Laplace(α1, α2) [0.01, 0.015]

Uniform(ν1 ν2) [0, 0.1]

Table 1: Parameters initialization.

Polya urn model. As demonstrated by Schreiber (2001) and discussed in Pemantle (2007),

the stochastic replicator is a generalized Polya urn scheme. Particularly, based on the de-

scription proposed by the latter, at each time t ≥ 0 there is a population N(t) made by

firms whose only attribute is the type i of micro-shocks, being {1, ..., i}. These firms are

represented by an urn with colors {1, ..., i}, the productivity ai(t) is the random fitness of

firm i and the market share si(t) its representation. The size of the population is determined

as follows. At each time step t a ball (firm) of color (micro-shock) i is extracted (with re-

placement) from the urn and returned to that along with ai(t) extra balls of color i. Being

ai(t) a measure of the fitness of type i in the population, its representation (market share)

will change of an amount proportional to its fitness against the others N(t) − 1 balls. Re-

peating this mechanism will allow the growth of type i to be proportional to its own success

against all the other types weighted by their own representation in the population, clearly:

∆si(t, t−1) = si(t−1)ai(t)/
∑
i ai(t)si(t−1). The finite number of opportunities of the Bot-

tazzi and Secchi (2006a) model, reads in our case as the finite, given dimension of the market,

that is assumed to be stationary, where the following constrain holds:
∑
i si(t) = 1,∀t ≥ 0.

When the fitness function is not influenced by any random noise, that is, in the Schumpeter

Mark I regime, the model collapses into a deterministic discrete replicator for the first time

step. We will show in the following section that this type of process is able to robustly

reproduce fat-tail distribution of growth rates under the three learning regime, and even to

generate Laplace distribution under the Scumpeter Mark II. In our replicator process, the

cumulativeness at the origin of fat-tail, occurs both in space as in Bottazzi and Secchi (2006a)

(finite dimension of the market) and in time (autocorrelated productivity).

5.1 Baseline Regime

We will start by analysing the Baseline Regime that amount to an intermediate set-up

between the two more “extreme” market configurations. Particularly we set:

• The market selection parameter A = 1;

• The cumalativiness parameter γ = 0
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• A Beta (1,5) distribution for the extraction of the micro-shocks.

In table 2 the aggregate descriptive statistics, across 500 time steps in the Baseline regime,

are presented.

Average Min Max Sigma

Number of entrants 12.172 0 35 5.72

Average age 8.52 1 12.5 2.06

Average productivity growth 0.046 0.034 0.060 0.004

Average shares growth -0.088 -0.26 0.016 0.045

Table 2: Descriptive Statistics for 500 time steps. Baseline Regime

In the following the dynamic of productivity and its persistence, size and growth rate

distribution, and market turbulence we will presented. In figure 4 the results from the

Baseline Regime are reported. Figure 4.a shows the log normalized productivity distribution

that reads as:

log ni(t) = log ai(t)− log
∑
i

ai(t)si(t− 1) (6)

The width of the distribution appears to be rather disperse. Figure 4.b shows the autocorre-

lation structure of the productivity (not normalized) distribution. It appears rather strong

with a coefficient of 0.97 at t−1. Proceeding with the analysis of the size distribution, figure

4.c shows the log rank − log size plot fitted against a LogNormal distribution. As already

discussed, if the size distribution follows a Power Law:

srβ = A (7)

linearising we have:

log r = α+ β log s (8)

where s and r are respectively the size and the rank of the distribution. β is the slope

parameter, and under the Zipf Law (that is a restriction of the Pareto law) it is equal to one.

In our case, the slope is clearly different from one, presenting a cut-off point above which

the Lognormal distribution is not any more a well approximation of the size distribution.

Our emphasis, more than to detect the emergence of a Zipf distribution, which as above

discussed, it’s not robust under sectoral level of disaggregation (and consider our regimes as

sectors characterised by a different innovative profile), is devoted to the emergence of the

clear-cut skewness and a strong departure from the Lognormal distribution. Finally figure

4.d shows the fat-tail distribution of growth rates, plotting the distribution against a Normal

(red line) and a Laplace (green line) one. The growth rate of firm size distribution is defined

as:

log gi(t) = log si(t)− log si(t− 1) (9)

where market shares represent our proxy for size. It is not necessary to normalize the size by

the average growth rate of the market, being the latter equal to zero. In order to understand

how fat the tails are, we estimate a symmetric Subbotin function, which is defined by three

parameters m, a and b. In particular m is a location parameter, a is a scale parameter and

b tells how fat the tails are. The Subbotin is a big family of distributions. According to the

value of the parameter b, the Subbotin:

fS(x) =
1

2ab1/bΓ(1/b+ 1)
e−

1
b | x−µa |b (10)

can yield:
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Figure 2: Baseline Scenario
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β

Baseline Regime -0.2562

(0.0453)

Schumpeter Mark I -0.190

(0.0736)

Schumpeter Mark II -0.4121

(0.058)

Table 3: Scaling variance relation. Estimation of the slope coefficient across regimes

• Gaussian Distribution: b = 2

• Laplace Distribution: b = 1

The figure shows a rather strong departure from Normality, with the b parameter on average

around 1.5, even though, in this baseline configuration we cannot reject the hypothesis of

Normality in many cases. The presence of fat-tails in the distribution of growth rates is a

sign of the shocks correlation across firms. Correlations among shocks is an hint that my

growth erodes yours, that is the selection effect of the replicator dynamic in action. On the

contrary, normality means absence of any selection pressure. Figure 4.e shows the negative

relationship between the variance of growth rate and size, together with an OLS fit:

σ(gi) = α+ βSi (11)

It is important to underline how, differently from the empirical literature, here we are using

shares and not revenues as size proxy. The estimation of the slope coefficient is presented in

table 3, together with the R2 estimation averaged across fifty runs (in brackets the standard

deviation). Across the three regimes, the negative relation is always present.

Finally figures 4.f and 4.g depict the turbulence of the market showing the dynamics over

time of market shares and Herfindahl-Hirschman index. It is rather clear how the market is

characterised by persistence fluctuations that are endogenously determined by the entry-exit

process.

We will proceed now with the exploration of the effect of different shapes of the microshock

distributions upon the growth rates. Recall that in this baseline regime the innovation process

is carried on both by entrants and incumbents. The model exhibits a strong qualitative

invariance to the shape of the input distributions of the innovation shocks, confirming the

findings by Bottazzi and Secchi (2006a). In table 4 the results of the average parameter

values across fifty runs of Monte Carlo simulations (in brackets their standard deviation).

The range of the parameter values is between 1.637 − 1.467. This suggest how the tails of

the distribution are very far from being normal.

5.2 Schumpeter Mark I Regime

The Schumpeter Mark I regime where, just to recall, there is no learning process and inno-

vation is carried on by entrants only, is a quite extreme case, that tries to basically isolate

the effect of market selection and to test the emergence of fat tail distribution. In table 5 the

descriptive statistics are shown. This market it’s relatively more calm, with respect to the

Baseline Regime, with a lower number of entrants, with more lasting age, and as expected

very low shares and productivity growth.

Figure 4.a and 4.b show the dynamic of productivity and its persistent nature. In this

particular case, having turned off the extraction of the incumbent growth rates, their initial

13



(a) Gaussian innovation shocks. (b) Laplace innovation shocks.

(c) Poisson innovation shocks. (d) Lognormal innovation shocks

Figure 3: Baseline Regime. Firm growth rates under different innovation shocks.

m a b

Gaussian shocks -0.102 0.128 1.637

(0.029) ( 0.003) (0.038)

Laplace shocks -0.057 0.0566 1.489

(0.004) (0.002) (0.048)

Poisson shocks -0.0843 0.099 1.327

(0.0257) (0.002) (0.048)

Beta shocks -0.081 0.096 1.539

(0.004) (0.003) (0.040)

Log-normal shocks -0.0896 0.1027 1.467

(0.0039) (0.0025) (0.040)

Table 4: Baseline Regime. Parameters estimation across different innovation shocks.
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Average Min Max Sigma

Number of entrants 3.73 0 13 2.09

Average age 22.07 1 30.36 4.14

Average productivity growth 0.000 0 0.37 0.016

Average shares growth -0.024 -0.11 -0.01 0.01

Table 5: Descriptive Statistics for 500 time steps. Schumpeter Mark I Regime

m a b

Gaussian shocks -0.0198 0.0502 1.426

(0.00066) (0.0011) (0.026)

Laplace shocks -0.013 0.045 1.360

(0.0018) (0.0012) (0.027)

Poisson shocks -0.046 0.0389 0.900

(0.0008) (0.0013) (0.0056)

Beta shocks -0.025 0.053 1.397

(0.001) (0.001) (0.023)

Log-normal shocks -0.0307 0.0543 1.329

(0.001) (0.0013) (0.020)

Table 6: Scumpeter Mark I. Parameters estimation across different innovation shocks.

productivity has been heterogeneously initialized: from a range between 1 − 1.5, each firm

is endowed by an initial amount of productivity that differs from the others. Figure 4.c

shows the skew distribution of firm size. It is worthy to note how in this regime an higher

fraction of firm size with respect to the baseline regime is characterized by a lognormal

distribution. Figure 4.d illustrates the distribution of growth rates. Even in absence of any

process of learning, the only effect of market selection operated by the replicator dynamics

accompanied by an entry process, is able to determine fat-tail distribution. Particularly, as

in the other regime, we test for a possible invariant property across distributions. Figure 4

represents the firm growth rates wherein the entrants productivity is extracted from different

distribution. Also in this case the persistent nature of fat tails is presented in table 6 where

the maximum value of the b parameter is recorded for Normal shocks up to the 0.9 value of

the Poisson distributed shocks.

5.3 Schumpeter Mark II Regime

Finally we shall explore a purely cumulative regime in the learning process. In table 7 the

aggregate descriptive statistics. Contrary to the Mark I, in this Regime we have an higher

degree of turbulence, with many entrants in the market, with an average age of five periods

(relatively close to the empirical recorded values).

In figure 6 the dynamics of productivity, size and market shares are presented. As in the

baseline regime the persistent heterogeneity of productivity is shown in figures 6.a and 6.b.

The skewness of the size distribution and the fat-tail nature of growth rates are illustrated in

figures 6.c and 6.d. The scaling variance relation in 6.e. In figures 6.f and 6.g the behaviour

of market shares and the market index concentration conclude the description of the cumu-

lative regime. Compared to the baseline scenario, the distribution of the growth rate in the

15



−0.4 −0.3 −0.2 −0.1 0.0 0.1 0.2

0.
00

5
0.

05
0

0.
50

0
5.

00
0

Normalized productivity distribution (pooled data)

Case 1
log(Normalized productivity)

B
in

ne
d 

de
ns

ity
 (

lo
g 

sc
al

e)

Model
Subbotin

m = −0.0282
a = 0.0550
b = 1.4120
D = 7.1755
p−val. = 0.0000

(a) Normalized productivity distribution.

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Case 1
Lag

A
C

F

Productivity autocorrelation lag structure

(b) Autocorrelation structure of productivity.

(c) Pooled size distribution. (d) Growth rates distribution.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

0.
02

0.
03

0.
04

0.
05

0.
06

Scaling of variance regarding firm size

Case 1
Size of firms

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 g

ro
w

th
 r

at
e

Data
Linear fit

beta = −0.2999
std. err. = 0.0220
p−val. = 0.0000
adj. R2 = 0.8690

(e) Scaling variance relation.

0 125 250 375 500

0.00

0.21

0.42

0.64

0.85

(f) Market Shares.

1 125 250 375 500

0.01

0.18

0.36

0.54

0.72

(g) Herfindahl-Hirschman Index.

Figure 4: Schumpeter Mark I Regime
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(a) Gaussian innovation shocks. (b) Laplace innovation shocks.

(c) Poisson innovation shocks. (d) Lognormal innovation shocks

Figure 5: Schumpeter Mark I. Firm growth rates under different innovation shocks

Average Min Max Sigma

Number of entrants 17.4 0 67 9.6

Average age 5.3 1 10.43 1.79

Average productivity growth 0.039 0.013 0.060 0.006

Average shares growth -0.13 -0.49 0.032 0.083

Table 7: Descriptive Statistics for 500 time steps. Schumpeter Mark II Regime

Schumpeter Mark II manifests a closer shape to the Laplace, with a b parameter on average

equal to 1.3. This suggests that an higher cumulativeness in the learning process hence an

higher memory of the past performances, increases the autocorrelation in time, and make

the shape of the growth rates more Laplacian. Figure 4 shows the invariant shape of the

growth rates under different innovation shock distributions. Table 8 reports the estimated

parameter values and the relative standard deviation.

5.4 Cumulativeness and selection

In the Schumpeter Mark II regime we explore the effects on the distribution of firms growth

rates of two different parameters: the γ parameter which captures the degree of cumulative-

ness in the learning process and the A parameter which embodies the degree of selectivity

in the market. The default distribution of the innovation shocks is a usual a Beta(1,5). We

start analysing the effect of cumulativeness. As expected, the increase in the γ parameter,

shown in figure 8 induces a more tent-shaped distribution in the growth rates up to be-

coming “super Laplacian” (see 8.c). Table 9 shows the negative relation between the γ and

the b parameters. This result is extremely important: the empirical distribution of the firm
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(a) Gaussian innovation shocks. (b) Laplace innovation shocks.

(c) Poisson innovation shocks. (d) Lognormal innovation shocks

Figure 7: Schumpeter Mark II Regime. Firm growth rates under different innovation shocks.

m a b

Gaussian shocks -0.162 0.147 1.402

(0.00543) (0.007) (0.053)

Laplace shocks -0.087 0.068 1.284

(0.0038) (0.0043) (0.049)

Poisson shocks -0.096 0.1008 1.231

(0.0039) (0.0026) (0.0523)

Beta shocks -0.113 0.1074 1.367

(0.0047) (0.0046) (0.0409)

Log-normal shocks -0.118 0.1132 1.327

(0.0060) (0.0046) (0.045)

Table 8: Schumpeter Mark II Regime. Parameters estimation across different innovation shocks.
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(a) γ = 1.5 (b) γ = 2.

(c) γ = 3.

Figure 8: Schumpeter Mark II Regime. Firm growth rates under different cumulativeness.
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Figure 9: Schumpeter Mark II Regime. A = 0.2

b

γ = 1.5 1.293

(0.0568)

γ = 2 1.176

(0.0797)

γ = 3 0.811

(0.100)

Table 9: Schumpeter Mark II Regime. The effect of cumulativeness

growth rates has been extensively proven to be tent-shaped. Actually, the Schumpeter Mark

II appears to be the regime that best replicates the empirical growth rates distribution. This

is equivalent to say that in the real markets a strong “Matthew effect” in the accumulation

of capabilities takes place. It is worthy to underline that the transmission mechanism start

from the cumulative learning process and affects selection.

Regarding the effect of the A parameter, it is rather clear how a low selection pressure allows

firms with lower growth rates to survive, moving the mass of the distribution on the lower

part of the support (see figures 10.a and 10.b), where the high growth firms, the “gazzellas”

occupies the upper-left tail. Conversely, when the selection pressure increases (see 10.c and

10.d), the more inefficient firms are frozen out by the market, the mass of the distribution

shifts in the left-part, whit just few alive inefficient firms that occupy the left tail. We

then deduce that the selection parameter is responsible for the symmetry of the distribution.

What happens to the the productivity distribution under a low selection pressure? Figure 9

shows how, under a low selectivity, the support of the distribution increases, becoming closer

to the empirical ones and a more asymmetric distribution of productivity, with a thicker left

tail emerges. This means that, given the same conditions on productivity, the low degree of

selection, allows to a big portion of low productive firms to operate in the market.

6 Conclusions

Empirically one ubiquitously observes a large ensemble of micro-stylised facts. In this pa-

per we address the possible causes of these phenomena. Here we investigate what kind of
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(a) A=0.2 (b) A=0.5

(c) A=1.5 (d) A=2

Figure 10: Schumpeter Mark II Regime. Firm growth rates under different selection pressure.

m a b

A=0.2 -0.0478 0.044 1.423

(0.00194) (0.00192) (0.0697)

A=0.5 - 0.0760 0.069 1.355

(0.00316) (0.0030) (0.0540)

A=1.5 -0.144 0.1412 1.419

(0.0063) (0.00621) (0.048)

A=2 -0.174 0.1758 1.458

(0.0085) (0.0064) (0.0289)

Table 10: Schumpeter Mark II Regime. The effect of different selection pressure
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economic process can generate fat tail distribution of the firm growth rates, together with

persistent heterogeneity in productivity, skewness in firm size distributions negatively related

with the growth rate standard deviation. In particular we focus on a bare-bone evolutionary

model where the two pillars of evolution, namely, learning and market selection, interact.

We examine three alternative market regimes: a Schumpeter Mark I, wherein no learning for

incumbents take place, an intermediate regime where incumbents do learn, and a Schumpeter

Mark II where the learning process is cumulative. The learning regimes interacted with a

“market regime” captured by some form of replicator dynamic. The quite remarkable finding

is that under all regimes competitive interactions induces correlation in the growth dynamics

of firms and thus the absence everywhere of a normal distribution of growth rates. Addition-

ally, persistent heterogeneity across firms and skewed size distribution are recovered by the

model. Fat tails emerge everywhere together with the scaling variance relation. Moreover

with cumulative learning the distributions of growth rates turn out to be Laplacian.

However even under the Schumpeter I regime the very process of competitive selection gen-

erates fat tails, also in absence of any learning.
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