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Abstract

Statistical investigation of economic data is vefien a posterior analysis. Econometric tools
are not an exception, despite some cutting-edgeuments adopted by some pioneers to gaze into
“crystal ball”. Clearly, among such (ex-post) tecjues the main difference is between methods
able to (reasonably) capture past issues in inhareteling approach or not. In the present
contribution, a quite recent multibreakpoint analysf time series is proposed with the aim to
overcome traditional constraints the researchertbhidace. As a matter of fact, common applied
methods are able to identify one (or at best tviajctural break(s) in time series. By investigating
oil crude prices, we propose a quite different apph applying a not (at the moment) widespread
econometric technique to detect more than a sisylectural break in empirical data analysis.
Hence, a brief discussion is developed to compselting outcomes with real historical facts. The
aim is to test endogenous capability of the tealmiiop pairing changes in statistical properties of

oil price time series with salient chronologicakats.
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1. Introduction

Statistical and econometric procedures are widespie quantitative economics as methods to
investigate and verify hypothesis and theories.edsry technique, they have relative merits and
shortfalls. Some of them are more accepted (hendelyadopted by scholars), while others are
less employed (with a lower degree of acceptanda@dynajority of academics). In order to gaining
proper approval, methods must be previously knowmplemented, applied, discussed and
validated in their specific research boundary. Mespghe relevant efforts and important
contributions found in literature, reliable timeriss forecasting is still currently a very complex
field of research even if properly and professibpnatanaged. Whoever in empirical time series
approaching forecasting methods faced relevanesssn results for medium-long exercises. A
wealth of techniques have been developed alsosaoriténg, representing and modeling the past.
Obviously, past (descriptive) and future (forecamt®ds in research activity are characterized by
proper requirements. Following this reasoning,dffieiency of an econometric method to analyze
past must be assessed taking into consideratianivel‘ability” to fit the phenomenon is asked to
depict and explain. In the present paper a relatie@ methodology is presented to detecting
multiple breaks in time series. To the best of knwwledge, and without pretension to exhaustion,
this is probably one of the very first attempts @dgy such a technique in the literature on
economics of commodity markets (oil in our case)nestly speaking, it is already possible to find
in empirical literature contributions pertainingusttural break point analysis. On this point we cit
two recent cases as merely examples, and withetgmsion to exhaustion. In their paper, Mayer et
al. (2017) analyzing the metal markets procesdlimgdhree-years window within the whole time
frame without addressing a specific statistical rapph. In further interesting literature on
financialization of commodity markets, Adams andi¢kl (2015) employ the Galeano and Wied
(2014) two steps-algorithm to identify a substdrgiagle “cut-off” division between the pre- and

the post-financialization period. Without enterimgto the merits of the above mentioned



contributions, the common feature of availablerditere focused on the topic (what is technically
labeled as a “breakpoint”) is that main binding stoaint lies in the inner procedure able to detect
and process one single structural change withintithe series object of investigation. Also the
Galeano and Wied (2014) algorithm has the aim teaigossible multiple breaks in time series,
but its application is devoted to the analysisha torrelation structure of the random variables to
verify its substantial constancy over time. Therefmnly when such a constancy is not present the
method tends to estimate the number and the timirpssible breaks. Thus, to be successful, it
has to process almost two series. For this reasorither chosen nor adequate for our case given
that a single time series is investigated. The tdgke present work is to apply the multiple break
detection procedure to oil prices to verify whetbleanges in statistical properties are locatetien t
near presence of significant historical facts dffecthe chronological sequence of data. Relevant
information to retrieve will be the statistical iagi such an event exerted on prices. Thus, a good

detection may be evaluated as a encouraging prdarif@ther research implementations.

2. Methodology

With the aim to deeply analyzing behavior, and leepassible changes in statistical properties,
of oil prices, we apply a quite recent (and intengg statistical technique developed to dating
multiple structural changes (aka breakpoints, nexpected shifts) in time series data as proposed
by Bai and Perron (2003 and 1998). Estimation apph the present work considers general forms
of serial correlation and heteroskedasticity in #reors, lagged dependent variables, trending
regressors, different distributions for the errarsd the regressors across segments. Thus, the
multiple break detection is endogenously deriveanfrdata by applying least-squares method to a
linear model. The main feature of such a framewakin the approach the researcher proposes in
the analysis. Considering more than one single gentous break when actually more than one

change exists is a need well outlined by seveualiss Lumsdaine and Papell (1997). Statistical and



econometric literature propose a wealth of workoeoning typical designed (also at unknown date)
single or, at most, double change tests (for exangid without pretension to exhaustion:
Lutkepohl et al., 2004; Lee and Strazicich, 2008pé¥ and Prodan, 2003; Ohara, 1999; Clemente
et al., 1998; Lumsdaine and Papell, 1997; Perr8@71Banerjee et al., 1992; Zivot and Andrews,
1992; Brown et al., 1975). A further widespreadgaaure was proposed by Chow (1960), but its
implementation steps require an exogenous speadichy the researcher of the null hypothesis for
(also in this case for just) one structural chaimggata, and then perform the test. Instead, aisd th
is the main difference, to identify and locate $kreictural changes in longitudinal series, the gmes
method leaves the statistical procedure to endagidypdetect the unknown dates where they could
be present. This is a non-subjective and mathesalgtisupported choice, and is less open to critics
by skeptical readers. The method here briefly sunz®é starts from the standard linear regression
model, and proceeds in determinimgoreakpoints within dataset (amd+ 1 partition segments),
where the coefficients of the regression relatigmshift from one stable relation to a differenteon
For interested readers, proofs and formal developsnean be found in Bai and Perron (2003 and
1998) as well as in Zeileis et al. (2003) for commpy details. Hence, having the linear regression

model expressed as :

Ve =% S+ & with (t=1,...n), (1)

where at timd, y is the observed dependent varialies a vector of regressork & 1), andf is

the corresponding x 1 vector of regression coefficients varying otiere. The hypothesis of the

constancy of regression coefficients holds whether:

Ho: G =/ (t=1,...n),

andm reasonable breakpoints leadtior 1 segments wherein the model (1) can be re-wréten



Vi =X B+ & with (t =t +1,....,t, J=1,...... ,m+1),

havingj as the segment index amgln = { t1,.... tn } as the set of breakpoints (orpartition) by
convention represented witlg = O andtm+1=n.
Within the m-partition, the least-squares estimate of fhéeads to the Residual Sum of Squares

(RS$ as:

m+1

RSS = Z rss(ti_q + 1,t;)
j=1

with rss(t;_; + 1,¢t;) is the minimal residual sum of squares injtheegment of the partition.
Dating and locating structural changes, it is neags to identify the breakpointsy,...... tm

resulting from the minimization the objective fuioct over all partitions withy —tj.1 > m>k:

t'1...... tm) =argminRSS  (2) .

1<tsm

Solutions to obtain global minimization of the atijee function in (2) are computationally
burdensome for ath > 2 (even in the hypothesis to have a reasonableleavhpizen). The order

of the grid search would be Q). Hence, hierarchical algorithms have to be apgiedo recursive
portioning or joining sub-samples. Segment sizesdatermined witln x n observations, where

is a bandwidth parameter chosen to include 1B6%0(15) of observation within each segment.
However, it is possible to selected another trimgnialue to refine the analysis. Some examples of
such applications can be found both in Bai (199i)l &ullivan (2002). Nonetheless, such
algorithms will not necessarily find the solutioims terms of global minimizers. Otherwise,

applying an approach in dynamic programming of o@?) for eachm time a change occurs is



much easier to implement. Bai and Perron (2003)utaile a dynamic algorithm fit for pure and
partial structural change models within an Ordinaggst Squares (OLS) regression context. Such a
proposal is able to obtain an optimal time-segntemtaby the recursive solution of the problem
following the Bellman’s principle (1952), whereihet stochastic event is analyzed by adopting a
recursive calculation strategy where each obtamsdlt is applied to the determination of the

subsequent one. Hence, in achieving the optimahsatation the algorithm is derived from:

RSS (Tmn) = min  [RSS (Tpy_1) FrSS(t+ 10)] .

np stsn—-np,

The same procedure applied R6Scan be implemented for the Schwarz Bayesian Infooma

Criterion BIC or SICby various authors) (Schwarz, 1978):

n 2
BIC — In (thnl Et) + pln(n)

n

Thus, it is possible to count on fitting criter@dvaluate multi-breakpoint detection procedure.
Finally, as far as treatment and possible outleges concerned, no specific formal theoretical
evaluation is conducted both to detect and modghttOutlier analysis within intervention models
framework is a common econometric technique toyaeaspecial events. Usually such procedures
are implemented through iterative calculationstfe case of changes in conditions occurring at
unknown points of times. Nevertheless, proper oasti are needed with regard to the
appropriateness of the general model specificatmal the inherent possibilities for over
specification in the number of outliers (Box et, 8016). Generally consisting in specific
adjustments, whatsoever modeling technique -everoiifectly applied- could be evaluated by

critics as an artificial adjustment to induce ompérasize specific results.



3. Data, empirical results and discussion

Yearly and monthly WTI quotations data in their noah prices are processed in the present
work. Despite its argued traditional regionalizatipNeiner, 1991), for depicting the unified
worldwide oil price/market, WTI price is a worldiehmark (Kuck and Schweikert, 201Ghassan
and Alhajhoj, 2016, Chevallier and lelpo, 2013 atdufman and Ullman, 2009). For what
concerns longitudinal data, yearly prices covemtheod 1861-2017, and are retrieved from Quandl
(2018). Monthly quotations cover a more recentqeefrom 1986:01 to 2018:05, and are gathered
from Datastream (2018). Periods are not exactlylapping because the attempt wishes to test the
procedure in a long-term and a medium-term cordasxtell. Additionally, it is not possible to find
monthly figures starting from 1861. The longer nidyntWTI price series is available from 1986
onwards. Considering the present work as an eXplerane, it must pointed out that different time
frequencies could also be selected for dedicatgshreh needs.

Processing the series with trimming parameterslequa= 0.15 andh = 0.10, we obtain the
following results resumed in Table 1 (where yelloslis indicate the minimuBIC for variousm +

1 partitions).



Table 1- Optimal partition with BIC and RSS
Yearly (1861-2017) Monthly (1986:01-2018:05)

m(h=0.15) BIC RSS BIC RSS
0 1,425 79,267 3,756 345,008
1 1,305 34,454 3,252 91,429
2 1,286 28,548 3,216 80,908
3 1,296 28,517 3,190 73,331
4 1,306 28,506 3,201 73,277
5 1,316 28,502 3,215 73,580
m (h=0.10) BIC RSS BIC RSS
0 1,483 109,210 3,756 345,008
1 1,438 76,696 3,252 91,429
2 1,396 55,069 3,090 58,585
3 1,383 47,502 2,973 41,982
4 1,369 40,850 2,939 37,307
5 1,374 39,562 2,905 33,197
6 1,384 39,475 2,914 32,944
7 1,394 39,399 2,923 32,657
8 1,404 39,325 2,935 32,648
9 1,414 39,325 3,004 37,815

Source: Personal elaboration on Datastream (2018)
and Quandl (2018)

Corresponding graphical representations are patray Figures from 1 to 4. The identification
of multiple breaks is preferred by adopting BIE€ criterion. RSSdoes not coincide, but we prefer

theBIC.
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Fig. 1- Breakpoint detection within yearly WTI nominal prices (h =0.15)
Source: Personal elaborations on Quandl (2018)



Breakpoints on montly crudeoil current
prices(h = 0.15)
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Fig. 2- Breakpoint detection within monthly WTI nominal prices (h = 0.15)
Sour ce: Personal elaborations on Datastream (2018)
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Fig. 3- Breakpoint detection within yearly WTI nominal prices (h = 0.10)
Sour ce: Personal elaborations on Datastr eam (2018)
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Fig. 4- Breakpoint detection within monthly WTI nominal prices (h = 0.10)
Sour ce: Personal elaborations on Datastr eam (2018)
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In the following Table 2 the exact identificatiohlweakpoints is summarized, and in Fig. 5to 8

are visually indicated by arrows.

Table 2- Identification of breakpoints

m (h = 0.15) Yearly (1861-2017) m(h=0.15) Monthly (1986:01-2018:05)
2 1970 3 1999 (11)
1993 2005 (6)
2013 (7)
m (h = 0.10) Yearly (1861-2017) m(h=0.10) Monthly (1986:01-2018:05)
4 1877 5 1999 (11)
1972 2004 (7)
1987 2007 (9)
2002 2010 (12)
2014 (11)

Sour ce: Personal elaboration on Datastream (2018) and Quandl| (2018)
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Fig. 5- Breakpoint visual identification within yearly WTI nominal prices (h = 0.15)
Sour ce: Personal elaborations on Quandl (2018)
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WTI yearly nominal prices (1861-2016)
h =0.10
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Fig. 6- Breakpoint visual identification within yearly WTI nominal prices (h = 0.10)
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Source: Personal elaborations on Quandl (2018)

WTI monthly nominal prices (1986:01-2018:05) h = 0.15
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Fig. 7- Breakpoint visual identification within monthly WTI nominal prices (h = 0.15)
Sour ce: Personal elaborationson Datastream (2018)
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WTI monthly nominal prices (1986:01-2018:05) h = 0.15
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Fig. 8- Breakpoint visual identification within monthly WTI nominal prices (h = 0.10)
Source: Personal elaborations on Datastream (2018)

The first thing to note is that -as could be reafbmto expect- the lower the window trimnfrer
the higher the number of structural changes dete&each an outcome is coherent with the fact that
algorithm is forced to fine-tuning the process mbnmees within its recursive procedure. This is
resolved through a higher number of segments aridigas. Another feature to point out is that the
longer the time series analyzed the lower is therall/ precision of the whole calculation. As a
matter of fact, only 2 and 4 statistical meanindfutakpoints are detected respectively vinth
0.15 anch = 0.10 in the 1861-2017 yearly time-frame. In thenthly series 3 (foh = 0.15) and 5
(for h = 0.10) breakpoints are present. Further to calmn, as previously stated, the main goal of
the work is to understand the ability of the metkmtielp researcher in highlighting statisticatcpri
movements coherent with historical facts exertinglavant driving effect on recorded quotations.
In pursuing such a task, we firstly analyze yeathborations. Chronological real oil facts to check
are taken from BP (2017) and McGuire (2015). Ire¢tye@ readers can easily verify on their own.

The yearly analysis of breakpoints with= 0.15 identifies only two relevant points. Thesfi
(1970) is not well-focused considering that themarent occurred in 1973 with the Yom Kippur

war, as it well recognized also in economic literat Also the second in 1993 is subsequent, and
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hence quite not well defined, to the 1990 Iraqiasion of Kuwait. As far as the more fine-tuned
yearly analysis withh = 0.10 is concerned, we found four points. The 718¥ coherent with
Rockefeller's Standard Oil Company market domingmestion (more than 95% of all refineries in
the USA). The 1972 is just preceding the Yom Kippuar. The third point in 1987 is quite
important considering that Saudi Arabia decidesrdgain its share of the global market by
increasing production in the face of crashing @icehe OPEC leader went from 3.8 million barrel
a day in 1985 to more than 10 million barrels a i@©86. This behavior has surely affected crude
guotations through market demand-supply balanaFplaty. The last point, identified in 2002, is
located beyond the Septembef'2001 Twin Towers event that characterized a pewiit a great
concern about the stability of Middle East’s praaut because of subsequent invasion of Irag.

For what concerns the medium-term analysis (198@P@nalyzing monthly quotations, it is
possible to note the followings. For tihe= 0.15 derived values, the first identified change
statistical properties is dated in 1999:11. Obvipewven if not on a monthly exact/corresponding
basis, this is recorded by chronological sourcea psrceived crucial moment in oil market due to
the end of the 1997 financial crises for the FastHagers (Indonesia, South Korea and Thailand)
and the inherent oil demand resurge. The secont fmmated in 2004.7 is quite close to the mid-
2000s, where the combination of declining produttaod soaring of Asian demand forced prices to
peak. The subsequent 2007:9 point -also in thi®e cast exactly centered- can be (widely)
encompassed in the global financial internatior@& crisis period. The fourth point located in
2010:12 can be coupled with the riots and protiesta the so called “Arab Spring” and the Libyan
civil war. Finally, the last individuated break pbin 2014:11 may be coupled with the oil prices
crash due to the contemporary high crude produdtiom USA and Russia jointly with OPEC'’s
November decision to maintain the rate of produrctio

Overall, as it is reasonable to expect, a long-tenalysis is more hard to compel with a general
fitting statistical model. Considering the presentainit roots in the series (even if not formally

proved for brevity reasons, a visual inspection banof easy help in the right perception), it is
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much better to adopt a more frequent trimming wimdAs a matter of fact, outcomes calculated by
h = 0.10 are more significant than correspondindily0.15. Also the monthly derived structural

breakpoints follow such considerations crediting tfore frequent parameter.

4. Conclusions

From previous discussion, we can get some insigtiisut the proposed methodology
implemented in the case of WTI oil prices. The &aplmethod seem have good potential for
further empirical investigations within (but notttvilimitation to) economics of commodity markets
analysis. In the case of oil monthly data and slgdhe more frequent trimming windows it can
be possible to get a certain effectiveness in itl@éng periods where statistical properties of the
series change in a meaningful manner. These pitintgh an acceptable correspondence with real
events. The main pros lie in the fact that intetmenmodels techniques (usually) follow the inverse
track. In fact in these cases the researcher nusttcon proper knowledge and sensibility to
analyze data. A whatsoever degree of gained experiand judgement has to be put into practice.
Such needs could be considered as issues in eaipg@onometric investigation of longitudinal
data. Through the proposed method the very oppdsitds, and a reverse path is to follow.
Structural breaks are endogenously derived anthistpoint, the research could feedback to the
chronological events in order to understand thelevwance in the analysis.. We do not affirm that
this approach is necessarily the best track, brghyswvidening the opportunities, it should act in

helping research work from a complementary persgect
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