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Abstract 

 

Statistical investigation of economic data is very often a posterior analysis. Econometric tools 

are not an exception, despite some cutting-edge instruments adopted by some pioneers to gaze into 

“crystal ball”. Clearly, among such (ex-post) techniques the main difference is between methods 

able to (reasonably) capture past issues in inherent modeling approach or not. In the present 

contribution, a quite recent multibreakpoint analysis of time series is proposed with the aim to 

overcome traditional constraints the researcher has to face. As a matter of fact, common applied 

methods are able to identify one (or at best two) structural break(s) in time series. By investigating 

oil crude prices, we propose a quite different approach applying a not (at the moment) widespread 

econometric technique to detect more than a single structural break in empirical data analysis. 

Hence, a brief discussion is developed to compare resulting outcomes with real historical facts. The 

aim is to test endogenous capability of the technique in pairing changes in statistical properties of 

oil price time series with salient chronological events.   
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1. Introduction 

 

Statistical and econometric procedures are widespread in quantitative economics as methods to 

investigate and verify hypothesis and theories. As every technique, they have relative merits and 

shortfalls. Some of them are more accepted (hence widely adopted by scholars), while others are 

less employed (with a lower degree of acceptance by the majority of academics). In order to gaining 

proper approval, methods must be previously known, implemented, applied, discussed and 

validated in their specific research boundary. Despite the relevant efforts and important 

contributions found in literature, reliable time series forecasting is still currently a very complex 

field of research even if properly and professionally managed. Whoever in empirical time series 

approaching forecasting methods faced relevant issues in results for medium-long exercises. A 

wealth of techniques have been developed also in describing, representing and modeling the past. 

Obviously, past (descriptive) and future (forecast) needs in research activity are characterized by 

proper requirements. Following this reasoning, the efficiency of an econometric method to analyze 

past must be assessed taking into consideration relative “ability” to fit the phenomenon is asked to 

depict and explain. In the present paper a relative new methodology is presented to detecting 

multiple breaks in time series. To the best of our knowledge, and without pretension to exhaustion, 

this is probably one of the very first attempts adopting such a technique in the literature on 

economics of commodity markets (oil in our case). Honestly speaking, it is already possible to find 

in empirical literature contributions pertaining structural break point analysis. On this point we cite 

two recent cases as merely examples, and without pretension to exhaustion. In their paper, Mayer et 

al. (2017) analyzing the metal markets process a rolling three-years window within the whole time 

frame without addressing a specific statistical approach. In further interesting literature on 

financialization of commodity markets, Adams and Glück (2015) employ the Galeano and Wied 

(2014) two steps-algorithm to identify a substantial single “cut-off” division between the pre- and 

the post-financialization period. Without entering into the merits of the above mentioned 
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contributions, the common feature of available literature focused on the topic (what is technically 

labeled as a “breakpoint”) is that main binding constraint lies in the inner procedure able to detect 

and process one single structural change within the time series object of investigation. Also the 

Galeano and Wied (2014) algorithm has the aim to detect possible multiple breaks in time series, 

but its application is devoted to the analysis of the correlation structure of the random variables to 

verify its substantial constancy over time. Therefore, only when such a constancy is not present the 

method tends to estimate the number and the timing of possible breaks. Thus, to be successful, it 

has to process almost two series. For this reason is neither chosen nor adequate for our case given 

that a single time series is investigated. The task of the present work is to apply the multiple break 

detection procedure to oil prices to verify whether changes in statistical properties are located in the 

near presence of significant historical facts affecting the chronological sequence of data. Relevant 

information to retrieve will be the statistical impact such an event exerted on prices. Thus, a good 

detection may be evaluated as a encouraging premise for further research implementations.      

   

2. Methodology 

 

With the aim to deeply analyzing behavior, and hence possible changes in statistical properties, 

of oil prices, we apply a quite recent (and interesting) statistical technique developed to dating 

multiple structural changes (aka breakpoints, i.e unexpected shifts) in time series data as proposed 

by Bai and Perron (2003 and 1998). Estimation applied in the present work considers general forms 

of serial correlation and heteroskedasticity in the errors, lagged dependent variables, trending 

regressors, different distributions for the errors and the regressors across segments. Thus, the 

multiple break detection is endogenously derived from data by applying least-squares method to a 

linear model. The main feature of such a framework lies in the approach the researcher proposes in 

the analysis. Considering more than one single endogenous break when actually more than one 

change exists is a need well outlined by several studies Lumsdaine and Papell (1997). Statistical and 
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econometric literature propose a wealth of work concerning typical designed (also at unknown date) 

single or, at most, double change tests (for example and without pretension to exhaustion: 

Lütkepohl et al., 2004; Lee and Strazicich, 2003; Papell and Prodan, 2003; Ohara, 1999; Clemente 

et al., 1998; Lumsdaine and Papell, 1997; Perron, 1997; Banerjee et al., 1992; Zivot and Andrews, 

1992; Brown et al., 1975). A further widespread procedure was proposed by Chow (1960), but its 

implementation steps require an exogenous specification by the researcher of the null hypothesis for 

(also in this case for just) one structural change in data, and then perform the test. Instead, and this 

is the main difference, to identify and locate the structural changes in longitudinal series, the present 

method leaves the statistical procedure to endogenously detect the unknown dates where they could 

be present. This is a non-subjective and mathematically supported choice, and is less open to critics 

by skeptical readers. The method here briefly summarized starts from the standard linear regression 

model, and proceeds in determining m breakpoints within dataset (and m + 1 partition segments), 

where the coefficients of the regression relationship shift from one stable relation to a different one. 

For interested readers, proofs and formal developments can be found in Bai and Perron (2003 and 

1998) as well as in Zeileis et al. (2003) for computing details. Hence, having the linear regression 

model expressed as : 

 

yt  = xt βt + εt  with (t =1,….n),      (1) 

 

where at time t,  yt is the observed dependent variable, xt is a vector of regressors (k × 1), and βt is 

the corresponding k × 1 vector of regression coefficients varying over time. The hypothesis of the 

constancy of regression coefficients holds whether: 

 

H0 : βt = β0  (t =1,….n), 

 

and m reasonable breakpoints lead to m + 1 segments wherein the model (1) can be re-written as: 
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yt  = xt βj + εt  with (t = tj-1 +1,…., tj ,  j =1,……, m+1), 

 

having j as the segment index and Tm,n = { t1,…. tm } as the set of breakpoints (or m-partition) by 

convention represented with  t0 = 0 and tm+1 = n .   

Within the m-partition, the least-squares estimate of the βj leads to the Residual Sum of Squares 

(RSS) as: 

 

��� = � �����	
� + 1, �	�
���

	��
 

 

 with �����	
� + 1, �	� is the minimal residual sum of squares in the j th  segment of the partition.  

Dating and locating structural changes, it is necessary to identify the breakpoints t’1,……t’m 

resulting from the minimization the objective function over all partitions with tj – tj-1 ≥ nh ≥ k : 

 

(t’1,……t’m) = argmin
�����

���     (2) . 

 

Solutions to obtain global minimization of the objective function in (2) are computationally 

burdensome for all m > 2 (even in the hypothesis to have a reasonable sample of size n). The order 

of the grid search would be O(nm). Hence, hierarchical algorithms have to be applied to do recursive 

portioning or joining sub-samples. Segment sizes are determined with h × n observations, where h 

is a bandwidth parameter chosen to include 15% (h =0.15) of observation n within each segment. 

However, it is possible to selected another trimming value to refine the analysis. Some examples of 

such applications can be found both in Bai (1997) and Sullivan (2002). Nonetheless, such 

algorithms will not necessarily find the solutions in terms of global minimizers. Otherwise, 

applying an approach in dynamic programming of order O(n2) for each m time a change occurs is 
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much easier to implement. Bai and Perron (2003) calculate a dynamic algorithm fit for pure and 

partial structural change models within an Ordinary Least Squares (OLS) regression context. Such a 

proposal is able to obtain an optimal time-segmentation by the recursive solution of the problem 

following the Bellman’s principle (1952), wherein the stochastic event is analyzed by adopting a 

recursive calculation strategy where each obtained result is applied to the determination of the 

subsequent one. Hence, in achieving the optimal segmentation the algorithm is derived from: 

 

��� (Tm,n) = min���	����
��
[��� ( �
�,�) + rss (t + 1,n)] . 

 

The same procedure applied for RSS can be implemented for the Schwarz Bayesian Information 

Criterion (BIC or SIC by various authors) (Schwarz, 1978): 

 

BIC = ln	!∑ #$%&$'(
� ) + * +,(�)�    . 

 

Thus, it is possible to count on fitting criteria to evaluate multi-breakpoint detection procedure.  

Finally, as far as treatment and possible outliers are concerned, no specific formal theoretical 

evaluation is conducted both to detect and model them. Outlier analysis within intervention models 

framework is a common econometric technique to analyze special events. Usually such procedures 

are implemented through iterative calculations for the case of changes in conditions occurring at 

unknown points of times. Nevertheless, proper cautions are needed with regard to the 

appropriateness of the general model specification and the inherent possibilities for over 

specification in the number of outliers (Box et al., 2016). Generally consisting in specific 

adjustments, whatsoever modeling technique -even if correctly applied- could be evaluated by 

critics as an artificial adjustment to induce or emphasize specific results.  

 



7 

 

 

3. Data, empirical results and discussion 

 

Yearly and monthly WTI quotations data in their nominal prices are processed in the present 

work. Despite its argued traditional regionalization (Weiner, 1991), for depicting the unified 

worldwide oil price/market, WTI price is a world benchmark (Kuck and Schweikert, 2017, Ghassan 

and Alhajhoj, 2016, Chevallier and Ielpo, 2013 and Kaufman and Ullman, 2009). For what 

concerns longitudinal data, yearly prices cover the period 1861-2017, and are retrieved from Quandl 

(2018). Monthly quotations cover a more recent period from 1986:01 to 2018:05, and are gathered 

from Datastream (2018). Periods are not exactly overlapping because the attempt wishes to test the 

procedure in a long-term and a medium-term context as well. Additionally, it is not possible to find 

monthly figures starting from 1861. The longer monthly WTI price series is available from 1986 

onwards. Considering the present work as an explorative one, it must pointed out that different time 

frequencies could also be selected for dedicated research needs. 

Processing the series with trimming parameters equal to h = 0.15 and h = 0.10, we obtain the 

following results resumed in Table 1 (where yellow cells indicate the minimum BIC for various m + 

1 partitions). 
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                                                   Table 1- Optimal partition with BIC and RSS 
  Yearly (1861-2017) Monthly (1986:01-2018:05) 

m (h = 0.15) BIC RSS BIC RSS 

0 1,425 79,267 3,756 345,008 

1 1,305 34,454 3,252 91,429 

2 1,286 28,548 3,216 80,908 

3 1,296 28,517 3,190 73,331 

4 1,306 28,506 3,201 73,277 

5 1,316 28,502 3,215 73,580 

m (h = 0.10) BIC RSS BIC RSS 

0 1,483 109,210 3,756 345,008 

1 1,438 76,696 3,252 91,429 

2 1,396 55,069 3,090 58,585 

3 1,383 47,502 2,973 41,982 

4 1,369 40,850 2,939 37,307 

5 1,374 39,562 2,905 33,197 

6 1,384 39,475 2,914 32,944 

7 1,394 39,399 2,923 32,657 

8 1,404 39,325 2,935 32,648 

9 1,414 39,325 3,004 37,815 

                                          Source: Personal elaboration on Datastream (2018)  
                                          and Quandl (2018) 
 

Corresponding graphical representations are portrayed in Figures from 1 to 4. The identification 

of multiple breaks is preferred by adopting the BIC criterion. RSS does not coincide, but we prefer 

the BIC.  

                                             

                                     Fig. 1- Breakpoint detection within yearly WTI nominal prices (h =0.15) 
                                            Source: Personal elaborations on Quandl (2018) 
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                                         Fig. 2- Breakpoint detection within monthly WTI nominal prices (h = 0.15) 
                                            Source: Personal elaborations on Datastream (2018) 
 

 
 
                                 Fig. 3- Breakpoint detection within yearly WTI nominal prices (h = 0.10) 
                                           Source: Personal elaborations on Datastream (2018) 
 

 

                              Fig. 4- Breakpoint detection within monthly WTI nominal prices (h = 0.10) 
                                           Source: Personal elaborations on Datastream (2018) 
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In the following Table 2 the exact identification of breakpoints is summarized, and in Fig. 5 to 8 

are visually indicated by arrows. 

 
 
                                                 Table 2- Identification of breakpoints 

m (h = 0.15) Yearly (1861-2017) m (h = 0.15) Monthly (1986:01-2018:05) 

2 1970 3 1999 (11) 

1993 2005 (6) 

        2013 (7) 

m (h = 0.10) Yearly (1861-2017) m (h = 0.10) Monthly (1986:01-2018:05) 

4 1877 5 1999 (11) 

1972 2004 (7) 

1987 2007 (9) 

2002 2010 (12) 

        2014 (11) 

                           Source: Personal elaboration on Datastream (2018) and Quandl (2018) 
 

 

          Fig. 5- Breakpoint visual identification within yearly WTI nominal prices (h = 0.15) 
                                           Source: Personal elaborations on Quandl (2018) 
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       Fig. 6- Breakpoint visual identification within yearly WTI nominal prices (h = 0.10) 
                                           Source: Personal elaborations on Quandl (2018) 
 

 

            Fig. 7- Breakpoint visual identification within monthly WTI nominal prices (h = 0.15) 
                                           Source: Personal elaborations on Datastream (2018) 
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                        Fig. 8- Breakpoint visual identification within monthly WTI nominal prices (h = 0.10) 
                                           Source: Personal elaborations on Datastream (2018) 
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hence quite not well defined, to the 1990 Iraqi invasion of Kuwait. As far as the more fine-tuned 

yearly analysis with h = 0.10 is concerned, we found four points. The 1877 is coherent with 

Rockefeller’s Standard Oil Company market dominance position (more than 95% of all refineries in 

the USA). The 1972 is just preceding the Yom Kippur war. The third point in 1987 is quite 

important considering that Saudi Arabia decides to regain its share of the global market by 

increasing production in the face of crashing prices. The OPEC leader went from 3.8 million barrel 

a day in 1985 to more than 10 million barrels a day in 1986. This behavior has surely affected crude 

quotations through market demand-supply balance interplay. The last point, identified in 2002, is 

located beyond the September 11st 2001 Twin Towers event that characterized a period with a great 

concern about the stability of Middle East’s production because of subsequent invasion of Iraq.   

For what concerns the medium-term analysis (1986-2018) analyzing monthly quotations, it is 

possible to note the followings. For the h = 0.15 derived values, the first identified change in 

statistical properties is dated in 1999:11. Obviously even if not on a monthly exact/corresponding 

basis, this is recorded by chronological sources as a perceived crucial moment in oil market due to 

the end of the 1997 financial crises for the Far East Tigers (Indonesia, South Korea and Thailand) 

and the inherent oil demand resurge. The second point located in 2004:7 is quite close to the mid-

2000s, where the combination of declining production and soaring of Asian demand forced prices to 

peak. The subsequent 2007:9 point -also in this case not exactly centered- can be (widely) 

encompassed in the global financial international 2008 crisis period. The fourth point located in 

2010:12 can be coupled with the riots and protests from the so called “Arab Spring” and the Libyan 

civil war. Finally, the last individuated break point in 2014:11 may be coupled with the oil prices 

crash due to the contemporary high crude production from USA and Russia jointly with OPEC’s 

November decision to maintain the rate of production. 

Overall, as it is reasonable to expect, a long-term analysis is more hard to compel with a general 

fitting statistical model. Considering the presence of unit roots in the series (even if not formally 

proved for brevity reasons, a visual inspection can be of easy help in the right perception), it is 
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much better to adopt a more frequent trimming window. As a matter of fact, outcomes calculated by 

h = 0.10 are more significant than corresponding by h = 0.15. Also the monthly derived structural 

breakpoints follow such considerations crediting the more frequent parameter.            

 

4. Conclusions 

 

From previous discussion, we can get some insights about the proposed methodology 

implemented in the case of WTI oil prices. The applied method seem have good potential for 

further empirical investigations within (but not with limitation to) economics of commodity markets 

analysis. In the case of oil monthly data and selecting the more frequent trimming windows it can 

be possible to get a certain effectiveness in identifying periods where statistical properties of the 

series change in a meaningful manner. These points fit with an acceptable correspondence with real 

events. The main pros lie in the fact that intervention models techniques (usually) follow the inverse 

track. In fact in these cases the researcher must count on proper knowledge and sensibility to 

analyze data. A whatsoever degree of gained experience and judgement has to be put into practice. 

Such needs could be considered as issues in empirical econometric investigation of longitudinal 

data. Through the proposed method the very opposite holds, and a reverse path is to follow. 

Structural breaks are endogenously derived and, at this point, the research could feedback to the 

chronological events in order to understand their relevance in the analysis.. We do not affirm that 

this approach is necessarily the best track, but surely widening the opportunities, it should act in 

helping research work from a complementary perspective.     
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