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Abstract

The combination of horizontal drilling and hydraulic fracturing to pro-
duce oil and natural gas has grown dramatically over the last few years
taking the market by surprise with the name of ”Shale Revolution”. The
first effects of shale revolution have been an increase of oil and gas supply,
especially for US and a dop in crude oil prices in the 2014-2016. One of
the remaining open question is why OPEC did not react reducing pro-
duction to maintain high prices. In literature the answer falls into three
main categories: (1) OPEC tried to defend its market share by flooding
the market in an attempt to drive out shale producers; (2) the shale oil
revolution changed the market weights leaving the only choice to accept
low prices; (3) OPEC was uncertain about the potential of shale oil and
needed to test its resilience under low prices. In order to better study
and understand the market strategies, we have built a real option model
between leader and a follower producers.
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1 Introduction

The global oil market is experiencing many changes especially due to new tech-
nologies used to extract crude oil and natural gas. The combination of horizontal
drilling and hydraulic fracturing to produce oil and natural gas was developed
in the 1970s (Mănescu and Nuňo, 2015) but has grown dramatically over the
last few years taking the market by surprise with the name of ”Shale Revolu-
tion”1. In 2013 the Unites States production is estimated to have produced 3.5
mb/d of shale oil which is three times higher than the amount it produced in
2010 (Energy Information Administration-EIA, 2014). The level of US crude
oil production reached almost that of Saudi Arabia and Russia in 2015 (Bataa
and Park, 2017). By 2020, US shale oil is estimated to reach 4.8 mb/d, repre-
senting about a third of total US supply (Mănescu and Nuňo, 2015). Therefore,
the first effect of shale revolution has been (and probably will be) an increase
of oil and gas supply, especially for US. The second (indirect) effect is on the
2014-2016 drop in crude oil prices2. Indeed, as pointed out by Ansari (2017),
”although results have given evidence for a variety of drivers, including demand
and geopolitical circumstances, the shale oil revolution is widely considered to
be the main driver of price developments”. This have also been profund im-
plication for global stategical competition in the oil market. Let us remind
that the fluctuations of international crude oil prices could have huge impacts
(Chen et. al, 2016) on the economic output (Wei et al., 2008;Wang and Zhang,
2014), inflation and unemployment (Uri, 1996; Du et al., 2010), stock market
(Cong et al., 2008) and fundamental industries (Jiao et al., 2012). Therefore it
is strongly important also for policy makers to study price fluctuation and the
comodities market strategies. Given the increase of US oil supply and so of the
competition in the oil market, the expected reaction of OPEC was a reduction
of supply to maintain price and profit shares. Surprisingly, OPEC maintained
stable production.

Therefore, many analysts predicted that a new normal era for the global
oil market had begun, and that the oil price would remain somewhere between
U.S.$35 and U.S.$50 per barrel in the future. [See Hartmann and Sam (2016)

and Barnato (2016) ‘Oil’s new normal may be lower than you think,’ CNBC
May 31, 2016.]

One of the remaining open question is why OPEC did not react reducing

1Formally, shale oil refers to a subset of unconventional oil (know as ” tight oil”) in
which conventional oil (light oil with low sulphur content) is trapped in very low-permeability
tight formations (known as shales) which makes extraction difficult. However, as stressed by
Mănescu and Nuňo, (2015) ”the convention in the press is to use the terms shale oil and tight

oil interchangeably when referring to oil extracted from all low-permeability formations (i.e.
not only oil from shale formations)” . Therefore, we follow this convention throughout the
paper and refer to the entire tight oil category as “shale oil”.

2The Western Texas Intermediate (WTI) crude oil price reached U.S.$26.21 per barrel in
February 2016, which is a record low since July 2002, while the U.S. real import price fell
more than 73% June 2014–February 2016, making it the most rapid decline within this time
frame since 1973.
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production to maintain high prices. There is no consensus regarding the reason
behind OPEC’s initial decision. Researchers’ results in these regards fall into
three main categories: (1) OPEC tried to defend its market share by flooding
the market in an attempt to drive out shale producers (Behar and Ritz, 2017;
Brown and Huntington, 2017; Coy, 2015; Gause, 2015; Mănescu and Nuño,
2015); (2) the shale oil revolution nullified OPEC’s market power (shale oil has
taken OPEC’s role as the swing producer), leaving its members no choice but to
accept low prices (Baffes et al., 2015; Baumeister and Kilian, 2016; Dale, 2016;
Kaletsky, 2015; The Economist, 2015); and (3) OPEC was uncertain about the
potential of shale oil and needed to test its resilience under low prices (Fattouh
et al., 2016; Huppmann and Livingston, 2015).

The first category is in line with a standard market entry game: in a dynamic
environment, if a new player wants to enter in the market, it may be rational
for the incumbent firm to enforce a downward-pressure on prices in order to
drive out the contestant, despite short-run losses for the incumbent. In this
line, Behar and Ritz (2017) show that increasing the conventional oil supply is
the dominant strategy when shale costs are high. The algebraic analysis of their
approach reveals discontinuous best responses. This could mean that a switch
to the flooding strategy occurs when parameter thresholds are crossed, which
is why market prices may jump as a response to even small parameter shocks.
Nevertheless, in order that the incumbent’s threat could work, it requires (i)
effectiveness, (ii) credibility, and (iii) temporal sustainability.

The second category claims that these conditions could not hold and that
OPEC had to accept the presence and dominance of US shale oil. The quick
expansion of shale resulted in a a chenge of the weights in the market: the quick
responsiveness of shale oil creates competition in which shel oil can substitute
conventional OPEC oil. The effect is that the only remaining choice for OPEC
is to follow the rules of competition. Baffes et al. (2015) note that OPEC’s
decision to freeze output, “implies that OPEC will no longer act as the swing
oil producer [and that] . . . marginal cost of unconventional oil producers may
play this role.”

Lastly, a possible third explanation is that OPEC was driven by uncertainty
and a desire for industry consolidation. Indeed, a pragmatic OPEC most likely
attempted to gain crucial information regarding shale’s performance in lower
price ranges (Huppmann and Livingston; 2015). In a more formal way, Fattouh
et al. (2016), by using a parametrised static game under uncertainty show that,
without sufficient knowledge about US shale elasticity, it is rational for a Saudi
Arabia not to cut output. Hence, there is a strong incentive for Saudi Arabia
to learn which game it is playing.

Also recently the relationship among shale revolution, oil prices and strate-
gies in the energy markets has been an interesting topic3 that has pushed re-
search and discussion. In order to understand better the strategic behaviour of

3In the Economist Espresso from November 30, 2017, we read about an OPEC meeting in
Vienna. Among others, it states that

”Soaring prices would further stimulate American shale production”.
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conventional and unconventional oil producers in a context of uncertainty, we
develop a real option framework between leader and a follower producers.

2 The Model

Firm 1 is the market leader and the more efficient producer (OPEC in the
example). Upon investing I1, Firm 1 is flexible in the sense that it is able to
produce any production amount q1 (t) it wants. Firm 1’s production costs are
zero.

Remark 1 Alternatively, Firm 1 invests in capacity K1. The investment cost
is δK1 and q1 is limited from above by K1, i.e. q1 (t) ≤ K1.

Firm 2 is less efficient (Shale-Gas producer in the example). Whenever it
is in the production stage, it incurs a positive cost C. To be able to produce,
Firm 2 must invest I2. Firm 2 is a dedicated (non-flexible) producer in the
sense that it either can produce a fixed q̄2 or zero. The firm is able to mothball.
Then it does not produce and maintenance costs are M < C. To go from the
production to the mothballing stage, Firm 2 incurs a sunk cost EM , and to
restart production, i.e. going from the mothballing to the production stage,
requires spending a sunk cost being equal to R.

Remark 2 Firm 2’s situation is simpler than in the mothballing models by
Guerra et al. (2017) and Dixit and Pindyck (1994, Chapter 7) in that Firm
2 cannot exit. This step seems to be less relevant in analyzing the ”OPEC
problem”.

The inverse demand function is given by

p = X (α− ηQ) ,

in which
dX = µXdt+ σXdz,

in which dz is the increment of a Wiener process. Furthermore, Q is market
output, i.e. either

Q = 0,

if none of the firms are active producer, or

Q = q1 (t) ,

In the Economist Espresso from December 1, 2017, it is stated that ”OPEC agreed to extend
its oil-production cut of 1.8m barrels per day by nine months, to the end of 2018. The cartel
is walking a fine line in trying to draw down global surpluses and nudge prices up without
sparking new production by nimble American shale producers”
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if only Firm 1 produces actively, or

Q = q̄2,

if only Firm 2 produces actively, or

Q = q1 (t) + q̄2,

if both firms produce actively.
In setting the output, Firm 1, the market leader, is the Stackelberg leader

and announces its output first. Then Firm 2 reacts. It either chooses to be
active. i.e. q2 = q̄2, or q1 is so large, and thus price p is so low, that Firm 2
refrains from production so that q2 = 0 (this is what happened in Vienna on
November 30).

3 Model derivations

As a first step we assume that suspension and resumption of operation

is costless for the follower. We assume in what follows that firm 1 is the
leader and firm 2 is the follower.

3.1 Model derivations - Output Game

For detailed derivations see Section 5.1.
The leader can choose between two strategies referred to as accommodate and

squeeze strategy, respectively. When applying the squeeze strategy, the leader
chooses its output quantity in order to force the follower into mothballing. If
squeezeing the follower out of the market is too expensive for the leader, i.e.
leads to suboptimal profit, it will accommodate the follower in the market. For
changing levels of X over time the leader will choose the optimal strategy.

First we look at the follower: For a given level of q1 the follower will produce
as long as πF (X, q1) > −Mq1 and suspend otherwise. Therefore,

πF (X, q1) =

{

X(α− η(q1 + q̄2))q̄2 − Cq̄2 if q1 < 1
η

(

α− ηq̄2 −
C−M
X

)

or X > C−M
α−η(q1+q̄2)

−Mq̄2 otherwise
(1)

So for a given q1 the follower will suspend if X falls below C−M
α−ηQ

. For a
given X the follower will suspend if the quantity of the leader q1 is great than
1
η

(

α− C−M
X

)

. So the leader can squeeze the follower out of the market by set-

ting its output quantity to a level q1 ≥ 1
η

(

α− C−M
X

)

. q
1,s

= 1
η

(

α− C−M
X

)

is

the lowest level for a given X that squeezes the follower out of the market.
Now we look at the leader: Note that q1 < q̄1 = α

η
in order for the leader to

get a positive monopoly profit.

πL(X) =

{

X(α− ηq1)q1 if the follower is in suspension
X(α− η(q1 + q̄2))q1 if the follower is producing

(2)
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Figure 1: Illustration of the production and suspension regions of the follower
as functions of q1 and X.

Given that the follower is in suspension independent of the leader’s output quan-
tity the optimal output quantity of the leader is equal to q1,m = α

2η . The leader
can keep the follower in suspension producing its optimal ”monopoly-quantity”

q1,m as long as q1,m ≥ q
1,s

or X ≤
2(C−M)

α
. Let’s define this boundary by

X̄s,m = 2(C−M)
α

. The optimal output quantity in order to apply the squeeze
strategy is equal to q1,s = max[q

1,s
, q1,m]. The leader accommodates the fol-

lower by producing the quantity q1,a = α−ηq̄2
2η . The output quantities and

corresponding profit function for the leader playing the different strategies is
equal to

q∗1 =











q1,m = α
2η if leader can keep the follower out of the market ”for free”

q
1,s

= 1
η

(

α− C−M
X

)

if the leader applies the squeeze strategy by overproducing

q1,a = α−ηq̄2
2η if the leader applies the accommodate strategy

(3)

πL(X) =















X α2

4η if leader can squeeze the follower out of the market by producing q1,m
C−M

η

(

α− C−M
X

)

if the leader applies the squeeze strategy producing q
1,s

X
[α2

−η2q̄2
2]

4η if the leader applies the accommodate strategy producing q1,a

(4)

We denote the profit of the leader using the accommodation strategy by

πL,a(X) = X
[α2

−η2q̄2
2]

4η . The profit of the leader using the squeeze strategy is
equal to

πL,s(X) =

{

X α2

4η X ≤ X̄s,m
C−M

η

(

α− C−M
X

)

X > X̄s,m

(5)

It is optimal for the leader to play the squeeze strategy ifX so that πL,s(X) >
πL,a(X). The derivations in show that it is optimal for the leader to squeeze
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the follower out of the market for X so that Xs < X < X̄s. If X ≤ X̄s,m the
leader can keep the follower out of the market by producing q1,m. If X > X̄s,m

the leader is overproducing with an amount equal to q
1,s

in order to keep the

follower out of the market.
Therefore the optimal production quantity and profit of the leader as a

function of X is equal to

q∗1 =











α
2η X ≤ X̄s,m
1
η

(

α− C−M
X

)

X̄s,m < X ≤ X̄s
α−ηq̄2

2η X > X̄s

(6)

πL(X) =











X α2

4η X ≤ X̄s,m
C−M

η

(

α− C−M
X

)

X̄s,m < X ≤ X̄s

X
[α2

−η2q̄2
2]

4η X > X̄s

(7)

This results in the following profit flow of the follower

πF (X) =

{

X
2 (α− ηq̄2)q̄2 − Cq̄2 X > X̄s

−Mq̄2 X ≤ X̄s
(8)

Proposition 3 • The upper boundary of the squeeze region X̄s is increasing
in C, η and q̄2, and decreasing in α and M .

• The squeeze region where the leader produces q
1,s

is always positive. Be-

cause X̄s − X̄s,m = 2Cηq̄2
α(α−ηq̄2

.

• If q̄2 < 2α
η

then X̄s − X̄s,m is decreasing in α, i.e.
∂(X̄s−X̄s,m)

∂α
< 0.

• X̄s − X̄s,m is increasing in q̄2, i.e.
∂(X̄s−X̄s,m)

∂q̄2
> 0.

• X̄s − X̄s,m is increasing in η, i.e.
∂(X̄s−X̄s,m)

∂η
> 0.

3.2 Model derivations - Investment Decisions

In order to derive the optimal investment decisions of the leader and the follower,
we solve the problem backwards, starting with the investment decision of the
follower.

3.2.1 Follower’s Optimal Investment Decision

Given that the leader has already invested, the follower cannot influence the
investment decision of its competitor anymore. This means that the follower
decision involves no strategic aspects. The follower has to determine the invest-
ment timing, which is similar to fixing a threshold level XF .
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The leader has already invested and is producing

q∗1 =
α

2η
for X ≤ X̄s,m (9)

as long as it is the only firm in the market, and

q∗1 =











α
2η X ≤ X̄s,m
1
η

(

α− C−M
X

)

X̄s,m < X ≤ X̄s
α−ηq̄2

2η X > X̄s

(10)

after the follower enters the market.
Therefore, the profit flow of the follower is equal to

πF (X) =

{

X
2 (α− ηq̄2)q̄2 − Cq̄2 X > X̄s

−Mq̄2 X ≤ X̄s
(11)

We denote the idle, operating and mothballing states by the labels i, o and
m, respectively. We find the value of the firm in each state as the appropriate
combinations of the expected profit or cost streams and the options to switch.
After investment the firm must decide whether and when to mothball operation.
It will mothball the operating project if the price falls to a threshold XM . Given
the project is in mothballing state, the firm will reactivate it if the price rises
to a threshold XR.

We find the value of the firm in each state as the appropriate combinations
of the expected profits or cost streams and the options to switch. The firm is
in an idle state over the interval (0, XF ). The value in this state is given by the
following equation:

Vi(X) = AXβ1 , (12)

where A is a constant to be determined. This is the value of the option to
invest. The operating state prevails over the interval (X̄s,∞), where the value
of the firm is given by the following equation:

Vo(X) = BXβ2 +
X(α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
, (13)

where constant B remains to be determined. The mothballed state can continue
of the range of (0, X̄s). The value of the mothballed project is given by

Vm(X) = DXβ1 −
Mq̄2

r
, (14)

where constant D remains to be determined. We can derive the expressions for
B and D by value matching and smooth-pasting at the threshold X̄s, where the
follower is indifferent between mothballing and operating. Solving

Vo(X̄s) = Vm(X̄s) (15)

V ′

o(X̄s) = V ′

m(X̄s). (16)

10



leads to

B = X̄−β2

s

(

β1

β1 − β2

)[

X(α− ηq̄2)q̄2
2(r − µ)

(

1− β1

β1

)

+
Cq̄2

r

]

(17)

D = X̄−β1

s

(

β2

β1 − β2

)[

X(α− ηq̄2)q̄2
2(r − µ)

(

1− β2

β2

)

+
Cq̄2

r

]

(18)

At the investment threshold XF , XM and XR, the following value matching
and smooth-pasting conditions hold:

Vi(XF ) = Vo(XF )− I2, (19)

V ′

i (XF ) = V ′

o(XF ). (20)

Then the optimal investment threshold XF of the follower is implicitly given
by the solution of the following equation:

BX
β2

F

(

β1 − β2

β1

)

+
XF (α− ηq̄2)q̄2

2(r − µ)

(

β1 − 1

β1

)

−
Cq̄2

r
− I2 = 0, (21)

and the constant A is equal to

A = X
−β1

F

[

BX
β2

F +
XF (α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
− I2

]

(22)

3.2.2 Leader’s Optimal Investment Decision

In the next step we determine the investment decision of the leader, where the
leader takes the strategy of the follower into account.

To derive the leader’s value function, we first consider the leader’s profit
function for a given GBM level X when both firms are active in the market
which is given by

πL(X) =











X α2

4η X ≤ X̄s,m
C−M

η

(

α− C−M
X

)

X̄s,m < X ≤ X̄s

X
[α2

−η2q̄2
2]

4η X > X̄s

(23)

The leader’s value VL(X) and profit πL(X) given that both firms have in-
vested has to satisfy the following differential equation

1

2
σ2X2 ∂

2VL

∂X2
+ µX

∂VL

∂X
− rVL + πL = 0 (24)

Substituting πL(X) into this equation and applying value matching and smooth
pasting at X = X̄s,m and X = X̄s leads to the following value function for the
leader

11



VL(X) =















LXβ1 + X
r−µ

α2

4η X ≤ X̄s,m

M1X
β1 +M2X

β2 + (C−M)α
rη

−
(C−M)2

ηX(r+µ−σ2) X̄s,m < X ≤ X̄s

NXβ2 + X
r−µ

[α2
−η2q̄2

2]
4η X > X̄s

where

L = X̄−β1

s,m

(

1

β1 − β2

)[

X̄s,m

r − µ

α2

4η
(β2 − 1)−M1X̄

β1

s,m(β2 − β1)−
(C −M)α

rη
β2 +

(C −M)2

ηX̄s,m(r + µ− σ2)
(β2 +

M1 = X̄−β1

s

(

−1

β1 − β2

)

[

X̄s

r − µ

[

α2 − η2q̄22
]

4η
(β2 − 1)−

(C −M)α

rη
β2 +

(C −M)2

ηX̄s(r + µ− σ2)
(β2 + 1)

]

M2 = X̄−β2

s,m

(

1

β1 − β2

)[

X̄s,m

r − µ

α2

4η
(β1 − 1)−

(C −M)α

rη
β1 +

(C −M)2

ηX̄s,m(r + µ− σ2)
(β1 + 1)

]

N = X̄−β2

s

(

1

β1 − β2

)

[

M2X̄
−β2

s (β1 − β2)−
X̄s

r − µ

[

α2 − η2q̄22
]

4η
(β1 − 1) +

(C −M)α

rη
β1 −

(C −M)2

ηX̄s(r + µ− σ

As β1 > 0 and β2 < 0 it is straightforward to conclude that L < 0 and N > 0.
The value function in equation (125) is split into three regions. In the demand
region X ≤ XM demand is so low that the follower is mothballing its operation.
This leaves the leader as the only active producer in the market earning a high
profit. The second term of the value function represents the expected total
discounted revenue the leader obtains when it is in the market as the only
producer forever. The first term of the value function represents a negative
term that corrects for the fact that demand might eventually increase so that
it is optimal for the follower to resume production again, i.e. X > XM , which
would decrease the leader’s profit. For demand intercept regions X > XM the
demand is so high that it is optimal for the follower to be active and produce.
The second term in the leader’s value function in this region stands for the
expected total discounted revenue the leader obtains when both firms are active
forever. The first term represents the option value that the demand might fall
below the mothballing threshold of the follower which would leave the leader in
a monopoly situation and it would earn a higher profit.

Before the follower’s market entry, the leader’s value function is equal to

VL(X) = OXβ1 +
X

r − µ

α2

4η
(29)

The leader’s value function before and after the follower’s entry is equal to

VL(X) =

{

OXβ1 + X
r−µ

α2

4η before

NXβ2 + X
r−µ

1
4η

[

α2 − η2q̄22
]

after
(30)

with

O = X
−β1

F

[

NX
β2

F −
XF

r − µ

ηq̄22
4

]

(31)
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according to value matching at the follower’s investment threshold XF . Intu-
itively, O is negative as OXβ1 corrects for the fact that when X(t) reaches XF ,
the follower enters the market which ends the leader’s monopolistic privilege.
Note that the follower would never invest just to enter into a mothballing state.

The investment threshold of the leader can be derived by value matching
and smooth pasting the value of the leader before investment, i.e. PXβ1 with
the value function after investment

VL(X) =

{

PXβ1 X ≤ XL

OXβ1 + X
r−µ

α2

4η − I1 X > XL
(32)

which leads to

P = X
−β1

L

[

OX
β1

L +
XL

r − µ

α2

4η
− I1

]

(33)

XL =

(

β1

β1 − 1

)

I1(r − µ)4η

α2
(34)

4 Model Derivation- Stackelberg competition af-

ter investment

Here we assume that the leader cannot influence the mothballing threshold of
the follower.

4.0.1 Follower’s Optimal Investment Decision

We assume in what follows that firm 1 is the leader and firm 2 is the follower.
Given that the leader has already invested, the follower cannot influence the
investment decision of its competitor anymore. This means that the follower
decision involves no strategic aspects. The follower has to determine the invest-
ment timing, which is similar to fixing a threshold level XF .

As the leader has already invested and is producing a quantity q1(q̄2) =
α
2η − q̄2

2 , the profit flow of the follower is equal to

πF (X) =

{

X(α− ηq̄2)
q̄2
2 − Cq̄2 X > XM

−Mq̄2 X ≤ XM
(35)

We denote the idle, operating and mothballing states by the labels i, o and
m, respectively. We find the value of the firm in each state as the appropriate
combinations of the expected profit or cost streams and the options to switch.
After investment the firm must decide whether and when to mothball operation.
It will mothball the operating project if the price falls to a threshold XM . Given
the project is in mothballing state, the firm will reactivate it if the price rises
to a threshold XR.

We find the value of the firm in each state as the appropriate combinations
of the expected profits or cost streams and the options to switch. The firm is

13



in an idle state over the interval (0, XF ). The value in this state is given by the
following equation:

Vi(X) = AXβ1 , (36)

where A is a constant to be determined. This is the value of the option to invest.
The operating state prevails over the interval (XM ,∞), where the value of the
firm is given by the following equation:

Vo(X) = BXβ2 +
X(α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
, (37)

where constant B remains to be determined. The mothballed state can continue
of the range of (0, XR). The value of the mothballed project is given by

Vm(X) = DXβ1 −
Mq̄2

r
, (38)

where constant D remains to be determined. At the switching points XF , XM

and XR, we have appropriate value matching and smooth-pasting conditions.
For the original investment, the conditions are

Vi(XF ) = Vo(XF )− I2, (39)

V ′

i (XF ) = V ′

o(XF ). (40)

For mothballing, the conditions are

Vo(XM ) = Vm(XM )− EM , (41)

V ′

o(XM ) = V ′

m(XM ). (42)

For reactivation, the conditions are

Vm(XR) = Vo(XR)−R, (43)

V ′

m(XR) = V ′

o(XR). (44)

This system of six equations determines the three thresholds XF , XM and XR

and the three constants A, B and D.

AX
β1

F = BX
β2

F +
XF (α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
− I2(45)

β1AX
β1−1
F = β2BX

β2−1
F +

(α− ηq̄2)q̄2
2(r − µ)

(46)

BX
β2

M +
XM (α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
= DX

β1

M −
Mq̄2

r
− EM (47)

β2BX
β2−1
M +

(α− ηq̄2)q̄2
2(r − µ)

= β1DX
β1−1
M (48)

DX
β1

R −
Mq̄2

r
= BX

β2

R +
XR(α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
−R(49)

β1DX
β1−1
R = β2BX

β2−1
R +

(α− ηq̄2)q̄2
2(r − µ)

(50)

14



σ B D A XM XR XF

0.075 36.56 0.0466 5.474 1.88 2.58 30.297
0.1 22.15 0.146 0.0002 1.824 2.66 32.76
0.15 15.12 0.506 0.008 1.73 2.83 38.25
0.2 13.56 1.008 0.052 1.65 2.98 44.51

Table 1: Parameter values: r = 0.05; σ = 0.2; µ = 0;α =1; C=1; EM=0; η
=0.08; I1=100; I2=200; M=0.01; R=0.8

This can be rewritten to

BX
β2

M +
XM (α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
−DX

β1

M +
Mq̄2

r
= −EM (51)

β2BX
β2−1
M +

(α− ηq̄2)q̄2
2(r − µ)

− β1DX
β1−1
M = 0 (52)

BX
β2

R +
XR(α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
−DX

β1

R +
Mq̄2

r
= R (53)

β2BX
β2−1
R +

(α− ηq̄2)q̄2
2(r − µ)

− β1DX
β1−1
R = 0 (54)

BX
β2

F +
XF (α− ηq̄2)q̄2

2(r − µ)
−

Cq̄2

r
−AX

β1

F = I2 (55)

β2BX
β2−1
F +

(α− ηq̄2)q̄2
2(r − µ)

− β1AX
β1−1
F = 0 (56)

4.0.2 Leader’s Optimal Investment Decision

In the next step we determine the investment decision of the leader, where the
leader takes the strategy of the follower into account. The follower has two
possibilities: investing at the same time as the leader or investing later. Given
the current level of X, the leader knows that the follower will invest later if
it... To derive the leader’s value function, we first determine the leader’s profit
function for a given GBM level X when both firms are active in the market. Due
to the flexibility to mothball the production, the follower might not produce for
low levels of X but remain in a mothballing state. For these two cases, the
leader’s profit flow is qual to

πL(X) =

{

X α2

4η X ≤ XM

X 1
4η

[

α2 − η2q̄22
]

X > XM

(57)

The leader’s value VF (X) and profit πL(X) given that both firms have in-
vested has to satisfy the following differential equation

1

2
σ2X2 ∂

2VL

∂X2
+ µX

∂VL

∂X
− rVL + πL = 0 (58)
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Substituting πL(X) into this equation and applying value matching and smooth
pasting at X = XM leads to the following value function for the leader

VL(X) =

{

LXβ1 + X
r−µ

α2

4η X ≤ XM

NXβ2 + X
r−µ

1
4η

[

α2 − η2q̄22
]

X > XM

where

L = X
−β1

M

β2 − 1

β1 − β2

XM

r − µ

ηq̄22
4

(59)

N = X
−β2

M

β1 − 1

β1 − β2

XM

r − µ

ηq̄22
4

(60)

As β1 > 0 and β2 < 0 it is straightforward to conclude that L < 0 and N > 0.
The value function in equation (125) is split into two regions. In the demand
region X ≤ XM demand is so low that the follower is mothballing its operation.
This leaves the leader as the only active producer in the market earning a high
profit. The second term of the value function represents the expected total
discounted revenue the leader obtains when it is in the market as the only
producer forever. The first term of the value function represents a negative
term that corrects for the fact that demand might eventually increase so that
it is optimal for the follower to resume production again, i.e. X > XM , which
would decrease the leader’s profit. For demand intercept regions X > XM the
demand is so high that it is optimal for the follower to be active and produce.
The second term in the leader’s value function in this region stands for the
expected total discounted revenue the leader obtains when both firms are active
forever. The first term represents the option value that the demand might fall
below the mothballing threshold of the follower which would leave the leader in
a monopoly situation and it would earn a higher profit.

Before the follower’s market entry, the leader’s value function is equal to

VL(X) = MXβ1 +
X

r − µ

α2

4η
(61)

In the following we analyze two strategies of the leader, entry deterrence
and entry accommodation. The leader’s value function before and after the
follower’s entry is equal to

VL(X) =

{

MXβ1 + X
r−µ

α2

4η , before

NXβ2 + X
r−µ

1
4η

[

α2 − η2q̄22
]

, after
(62)

with

M = X
−β1

F

[

NX
β2

F −
XF

r − µ

ηq̄22
4

]

(63)
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according to value matching at the follower’s investment threshold XF . Intu-
itively, M is negative as MXβ2 corrects for the fact that when X(t) reaches XF ,
the follower enters the market which ends the leader’s monopolistic privilege.
Note that the follower would never invest just to enter into a mothballing state.

Assuming that the leader cannot influence the mothballing decision of the
follower we derive the optimal investment decision of the leader. The value of
teh leateru before and after its invest is equal to:

VL(X) =

{

OXβ1 , X < XL

M(XF )X
β1 + X

r−µ
α2

4η , X ≥ XL
(64)

Value matching and smooth pasting at the leader’s investment threshold
leads to:

XL =

(

β1

β1 − 1

)

(r − µ)I14η

α2
. (65)

5 Output games

5.1 Dynamic output game - accommodate and squeeze

strategy of the leader

We will formulate the dynamic output game similar to Behar and Ritz (2017)
along the lines that the leader can choose between two strategies referred to as
accommodate and squeeze strategy, respectively.

1. Accommodate: The leader maximizes its profits taking as given that the
follower produces up to q̄2 for all X > XM .

2. Squeeze: The leader increases its output quantity in order to force the
follower into mothballing for a given level of X. Note that in Behar and
Ritz (2017) the leader lowers its market price to a certain level in order
to squeeze the player out of the market4. In Behar and Ritz (2017) it is
assumed that the leader has market power.

First we look at the follower: As a first step we assume that suspension

and resumption of operation is costless for the follower. Furthermore

we set the variable costs in suspension equal to zero. In that case the
follower will produce as long as πF (X, q1) > 0 and suspend otherwise. Therefore,

πF (X, q1) =

{

X(α− η(q1 + q̄2))q̄2 − Cq̄2 if q1 < 1
η

(

α− ηq̄2 −
C
X

)

or X > C
α−η(q1+q̄2)

0 otherwise
(66)

4Behar and Ritz (2017) state that ”since OPEX is the only strategy player” in their model
”it can equivalently choose price or its output level to maximize its profits.” Since their model
”features a dominant player with a competitive fringe, rather than oligopolistic interaction, it
is not sensitive to whether the choice variable is price (Bertrand) or quantity (Cournot)”.
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Figure 3: Illustration of the production and suspension regions of the follower
as functions of q1 and X.
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Figure 4: Effect of increasing q̄2 on suspension boundary of the follower. Blue
line: q̄2 = 1 and pink line: q̄2 = 5

So for a given q1 the follower will suspend if X falls below C
α−ηQ

. For a given X

the follower will suspend if the quantity of the leader q1 is great than
1
η

(

α− C
X

)

.
So the leader can squeeze the follower out of the market by setting its output
quantity to a level q1 ≥ 1

η

(

α− C
X

)

. So q
1,s

= 1
η

(

α− C
X

)

is the lowest level for

a given X that squeezes the follower out of the market.
Now we look at the leader: Note that q1 < q̄1 = α

η
in order for the leader to

get a positive monopoly profit.

πL(X) =

{

X(α− ηq1)q1 if the follower is in suspension
X(α− η(q1 + q̄2))q1 if the follower is producing

(67)

Given that the follower is in suspension independent of the leader’s output
quantity the optimal output quantity of the leader is equal to q1,m = α

2η . The
leader can keep the follower in suspension producing its optimal ”monopoly-
quantity” q1,m as long as q1,m ≥ q

1,s
or X ≤ 2C

α
. Let’s define this boundary by

X̄s,m = 2C
α
. The optimal output quantity in order to apply the squeeze strategy
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Figure 5: The different production quantities (upper plot) and profit functions
(lower plot) of the leader as a function of X.

is equal to q1,s = max[q
1,s

, q1,m]. The leader accommodates the follower by

producing the quantity q1,a = α−ηq̄2
2η . The output quantities and corresponding

profit function for the leader playing the different strategies is equal to

q∗1 =











q1,m = α
2η if leader can keep the follower out of the market ”for free”

q
1,s

= 1
η

(

α− C
X

)

if the leader applies the squeeze strategy by overproducing

q1,a = α−ηq̄2
2η if the leader applies the accommodate strategy

(68)

πL(X) =















X α2

4η if leader can squeeze the follower out of the market by producing q1,m
C
η

(

α− C
X

)

if the leader applies the squeeze strategy producing q
1,s

X
[α2

−η2q̄2
2]

4η if the leader applies the accommodate strategy producing q1,a

(69)

We denote the profit of the leader using the accommodation strategy by
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πL,a(X) = X
[α2

−η2q̄2
2]

4η . The profit of the leader using the squeeze strategy is
equal to

πL,s(X) =

{

X α2

4η X ≤ X̄s,m
C
η

(

α− C
X

)

X > X̄s,m

(70)

Now we analyze in which cases the leader might want to play the squeeze
strategy, i.e. for X so that πL,s(X) > πL,a(X). This condition is equivalent to

P (X) = X2
(

η2q̄22 − α2
)

+ 4XCα− 4C2 > 0 (71)

P (.) is a downward pointing parabola. We want to know for which values of
X this function is positive. The maximum of this function lays at Xmax =

2αC
(ηq̄2+α)(ηq̄2α)

. As long as q̄2 < α
η

it holds that πL,s(X) > πL,a(X) for X ∈

( 2C
α+ηq2

, 2C
α−ηq2

) where we denote: Xs = 2C
α+ηq2

and X̄s = 2C
α−ηq2

. Note that

Xs < X̄s,m < X̄s and X̄s,m > 0. Note that, of course, πL,m(X) > πL,s(X).
Therefore the optimal production quantity of the leader as a function of X

is equal to

q∗1 =











α
2η X ≤ X̄s,m
1
η

(

α− C
X

)

X̄s,m < X ≤ X̄s
α−ηq̄2

2η X > X̄s

(72)

• The upper boundary of the squeeze region X̄s is increasing in C, η and
q̄2, and decreasing in α.

• The squeeze region where the leader produces q
1,s

is always positive. Be-

cause X̄s − X̄s,m = 2Cηq̄2
α(α−ηq̄2

.

• If q̄2 < 2α
η

then X̄s − X̄s,m is decreasing in α, i.e.
∂(X̄s−X̄s,m)

∂α
< 0.

• X̄s − X̄s,m is increasing in q̄2, i.e.
∂(X̄s−X̄s,m)

∂q̄2
> 0.

• X̄s − X̄s,m is increasing in η, i.e.
∂(X̄s−X̄s,m)

∂η
> 0.

5.1.1 Positive variable mothballing costs

If we assume that there are positive variable costs related to staying in the
mothballing state given by M . Then

πF (X, q1) =

{

X(α− η(q1 + q̄2))q̄2 − Cq̄2 if q1 < 1
η

(

α− ηq̄2 −
C−M
X

)

or X > C−M
α−η(q1+q̄2)

−Mq̄2 otherwise
(73)

So for a given q1 the follower will suspend if X falls below C−M
α−ηQ

. For a
given X the follower will suspend if the quantity of the leader q1 is great than
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1
η

(

α− C−M
X

)

. So the leader can squeeze the follower out of the market by set-

ting its output quantity to a level q1 ≥ 1
η

(

α− C−M
X

)

. So q
1,s

= 1
η

(

α− C−M
X

)

is the lowest level for a given X that squeezes the follower out of the market.
By simply replacing C by CM in all the expressions above, we take this cost in
account.

5.2 Output game after both firms have invested - Stack-

elberg competition

We assume that after investment the leader and follower play a Stackelberg
production game. As usual we solve the model by backward induction. Given
that the follower is not flexible and assuming that the mothballing threshold is
fixed and independent of q1, its output is equal to:

q∗2(q1, X) =

{

q̄2 if X > XM

0 if X ≤ XM
(74)

The best response of the leader given q∗2(q1, X) is then equal to

q∗1(X) =

{

α−ηq̄2
2η if X > XM
α
2η if X ≤ XM

(75)

and the profit function equal to

πL(X) =

{

X α2

4η X ≤ XM

X 1
4η

[

α2 − η2q̄22
]

X > XM

(76)

This leads to the following profit function of the follower:

πF (X) =

{

X (α− ηq̄2)
q̄2
2 X > XM

−M X ≤ XM
(77)

5.3 Output game after both firms have invested

We assume that after investment the leader and follower play a Stackelberg
production game. As usual we solve the model by backward induction. Given
that the follower is not flexible and assuming that the mothballing threshold is
fixed and independent of q1, its output is equal to:

q∗2(q1, X) =

{

q̄2 if X > XM

0 if X ≤ XM
(78)

The profit function of the follower in the operating state is equal to

πF o(X) = X (α− η(q1 + q̄2)) q̄2 − Cq̄2 (79)
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, which is negative if q1 > 1
η

(

α− C
X

)

− q̄2 or X < C
α−η(q1+q̄2)

The best response of the leader given q∗2(q1, X) is then equal to

q∗1(X) =

{

α−ηq̄2
2η if X > XM
α
2η if X ≤ XM

(80)

and the profit function equal to

πL(X) =

{

X α2

4η X ≤ XM

X 1
4η

[

α2 − η2q̄22
]

X > XM

(81)

This leads to the following profit function of the follower:

πF (X) =

{

X (α− ηq̄2)
q̄2
2 X > XM

−M X ≤ XM
(82)

5.4 Output game after both firms have invested and are

flexible- Stackelberg competition

As usual we solve the model by backward induction. Given the output of the
leader q1 and the mothballing threshold XM the output that maximizes the
follower’s profit is equal to

q∗2(q1, X) =

{

1
2η

[

α− C
X

]

− q1
2 if X > XM

0 if X ≤ XM

(83)

The best response of the leader given q∗2(q1, X) is then equal to

q∗1(X) =

{

1
2η

[

α+ C
X

]

if X > XM
α
2η if X ≤ XM

(84)

and the profit function equal to

πL(X) =

{

(X(α− η(q1 + q̄2))− C)q̄2 X > XM

−Mq̄2 X ≤ XM
(85)

This leads to the following output of the follower:

q∗2(q1, X) =

{

1
4η

[

α− 3C
X

]

if X > XM

0 if X ≤ XM

(86)

The profit functions of the follower and leader, respectively are then equal
to

πF (X) =

{

X
16η

(

α− 3C
X

)2
X > XM

−M X ≤ XM

(87)

πL(X) =

{

X
8η

(

α+ C
X

)2
X > XM

... X ≤ XM

(88)
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6 Further cases

These are the derivations assuming that the leader does not consider the squeeze
strategy.

6.0.1 Follower’s Optimal Investment Decision

We assume in what follows that firm 1 is the leader and firm 2 is the follower.
Given that the leader has already invested, the follower cannot influence the
investment decision of its competitor anymore. This means that the follower
decision involves no strategic aspects. The follower has to determine the invest-
ment timing, which is similar to fixing a threshold level XF .

As the leader has already invested and is producing a quantity q1(q̄2) =
α
2η − q̄2

2 , the profit flow of the follower is equal to

πF (X, q1) =

{

X(α− η(q1 + q̄2))q̄2 − Cq̄2 X > XM

−Mq̄2 X ≤ XM
(89)

We denote the idle, operating and mothballing states by the labels i, o and
m, respectively. We find the value of the firm in each state as the appropriate
combinations of the expected profit or cost streams and the options to switch.
After investment the firm must decide whether and when to mothball operation.
It will mothball the operating project if the price falls to a threshold XM . Given
the project is in mothballing state, the firm will reactivate it if the price rises
to a threshold XR.

We find the value of the firm in each state as the appropriate combinations
of the expected profits or cost streams and the options to switch. The firm is
in an idle state over the interval (0, XF ). The value in this state is given by the
following equation:

Vi(X) = AXβ1 , (90)

where A is a constant to be determined. This is the value of the option to invest.
The operating state prevails over the interval (XM ,∞), where the value of the
firm is given by the following equation:

Vo(X) = BXβ2 +
X(α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
, (91)

where constant B remains to be determined. The mothballed state can continue
of the range of (0, XR). The value of the mothballed project is given by

Vm(X) = DXβ1 −
Mq̄2

r
, (92)

where constant D remains to be determined. At the switching points XF , XM

and XR, we have appropriate value matching and smooth-pasting conditions.
For the original investment, the conditions are

Vi(XF ) = Vo(XF )− I2, (93)

V ′

i (XF ) = V ′

o(XF ). (94)
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For mothballing, the conditions are

Vo(XM ) = Vm(XM )− EM , (95)

V ′

o(XM ) = V ′

m(XM ). (96)

For reactivation, the conditions are

Vm(XR) = Vo(XR)−R, (97)

V ′

m(XR) = V ′

o(XR). (98)

This system of six equations determines the three thresholds XF , XM and XR

and the three constants A, B and D.

AX
β1

F = BX
β2

F +
XF (α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
− I2(99)

β1AX
β1−1
F = β2BX

β2−1
F +

(α− η(q1 + q̄2))q̄2
r − µ

(100)

BX
β2

M +
XM (α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
= DX

β1

M −
Mq̄2

r
− EM (101)

β2BX
β2−1
M +

(α− η(q1 + q̄2))q̄2
r − µ

= β1DX
β1−1
M (102)

DX
β1

R −
Mq̄2

r
= BX

β2

R +
XR(α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
−R(103)

β1DX
β1−1
R = β2BX

β2−1
R +

(α− η(q1 + q̄2))q̄2
r − µ

(104)
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This is equivalent to the following system of equations5:

BX
β2

M +
XM (α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
−DX

β1

M +
Mq̄2

r
= −EM (109)

β2BX
β2−1
M +

(α− η(q1 + q̄2))q̄2
r − µ

− β1DX
β1−1
M = 0 (110)

BX
β2

R +
XR(α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
−DX

β1

R +
Mq̄2

r
= R (111)

β2BX
β2−1
R +

(α− η(q1 + q̄2))q̄2
r − µ

− β1DX
β1−1
R = 0 (112)

BX
β2

F +
XF (α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
−AX

β1

F = I2 (113)

β2BX
β2−1
F +

(α− η(q1 + q̄2))q̄2
r − µ

− β1AX
β1−1
F = 0 (114)

Now we analyse how the leader can influence the production decision of
the leader by setting it’s output quantity. Note that the leader is flexible and
therefore, can adapt its output quantity freely. Therefore, we study the inter-
action between mothballing and resumption of the follower and the influence of
the leader’s production quantity q1 on it. This means we study the first four
equations of the system:

BX
β2

M +
XM (α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
−DX

β1

M +
Mq̄2

r
= −EM (115)

β2BX
β2−1
M +

(α− η(q1 + q̄2))q̄2
r − µ

− β1DX
β1−1
M = 0 (116)

BX
β2

R +
XR(α− η(q1 + q̄2))q̄2

r − µ
−

Cq̄2

r
−DX

β1

R +
Mq̄2

r
= R (117)

β2BX
β2−1
R +

(α− η(q1 + q̄2))q̄2
r − µ

− β1DX
β1−1
R = 0 (118)

We can regard this system of four equations in the four unknowns B, D, XM

and XR, and solve it on its own. This system of equations is similar to the one
presented in Chapter 7, Subsection 1.A in ?6.

5Defining the function G(X) = BXβ2 +
X(α−η(q1+q̄2))q̄2

r−µ
−

Cq̄2
r

− DXβ1 + Mq̄2
r

we can

rewrite the the first four equations of this system into

G(XM ) = −EM (105)

GX(XM ) = 0 (106)

G(XR) = R (107)

GX(XR) = 0 (108)

6As ? it can be shown that a solution to the system exists, is unique, and has economically
intuitive basic properties. ? refer to (?, Appendix A)
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We combine the first two equations to derive the unknown D in terms of
XM :

D = X
−β1

M

(

β2

β2 − β1

)[

XM (α− η(q1 + q̄2))q̄2
r − µ

(

β2 − 1

β2

)

−
Cq2

r
+

Mq2

r
+ EM

]

(119)

Combining the last two equations to derive the unknown B in terms of XR:

B = X
−β2

R

(

β1

β1 − β2

)[

XR(α− η(q1 + q̄2))q̄2
r − µ

(

1− β1

β1

)

+
Cq2

r
−

Mq2

r
+R

]

(120)

With that we can implicitly represent the two thresholds XM and XR as the
solutions to the two equations:

B(XR, q1)X
β2

M +

(

β1 − 1

β1 − β2

)[

XM (α− η(q1 + q̄2))q̄2
r − µ

]

+

[

Cq2

r
−

Mq2

r
− EM

](

β1

β2 − β1

)

= 0(121)

(

1− β2

β1 − β2

)[

XR(α− η(q1 + q̄2))q̄2
r − µ

]

+

[

Cq2

r
−

Mq2

r
+R

](

β2

β1 − β2

)

−D(XM , q1)X
β1

R = 0(122)

6.0.2 Leader’s Optimal Investment Decision

In the next step we determine the investment decision of the leader, where the
leader takes the strategy of the follower into account. The follower has two
possibilities: investing at the same time as the leader or investing later. Given
the current level of X, the leader knows that the follower will invest later if
it... To derive the leader’s value function, we first determine the leader’s profit
function for a given GBM level X when both firms are active in the market. Due
to the flexibility to mothball the production, the follower might not produce for
low levels of X but remain in a mothballing state. For these two cases, the
leader’s profit flow is qual to

πL(X) =

{

X α2

4η X ≤ XM

X 1
4η

[

α2 − η2q̄22
]

X > XM

(123)

The leader’s value VF (X) and profit πL(X) given that both firms have in-
vested has to satisfy the following differential equation

1

2
σ2X2 ∂

2VL

∂X2
+ µX

∂VL

∂X
− rVL + πL = 0 (124)

Substituting πL(X) into this equation and applying value matching and smooth
pasting at X = XM leads to the following value function for the leader

VL(X) =

{

LXβ1 + X
r−µ

α2

4η X ≤ XM

NXβ2 + X
r−µ

1
4η

[

α2 − η2q̄22
]

X > XM
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where

L = X
−β1

M

β2 − 1

β1 − β2

XM

r − µ

ηq̄22
4

(125)

N = X
−β2

M

β1 − 1

β1 − β2

XM

r − µ

ηq̄22
4

(126)

As β1 > 0 and β2 < 0 it is straightforward to conclude that L < 0 and N > 0.
The value function in equation (125) is split into two regions. In the demand
region X ≤ XM demand is so low that the follower is mothballing its operation.
This leaves the leader as the only active producer in the market earning a high
profit. The second term of the value function represents the expected total
discounted revenue the leader obtains when it is in the market as the only
producer forever. The first term of the value function represents a negative
term that corrects for the fact that demand might eventually increase so that
it is optimal for the follower to resume production again, i.e. X > XM , which
would decrease the leader’s profit. For demand intercept regions X > XM the
demand is so high that it is optimal for the follower to be active and produce.
The second term in the leader’s value function in this region stands for the
expected total discounted revenue the leader obtains when both firms are active
forever. The first term represents the option value that the demand might fall
below the mothballing threshold of the follower which would leave the leader in
a monopoly situation and it would earn a higher profit.

Before the follower’s market entry, the leader’s value function is equal to

VL(X) = MXβ1 +
X

r − µ

α2

4η
(127)

In the following we analyze two strategies of the leader, entry deterrence
and entry accommodation. The leader’s value function before and after the
follower’s entry is equal to

VL(X) =

{

MXβ1 + X
r−µ

α2

4η before

NXβ2 + X
r−µ

1
4η

[

α2 − η2q̄22
]

after
(128)

with

M = X
−β1

F

[

NX
β2

F −
XF

r − µ

ηq̄22
4

]

(129)

according to value matching at the follower’s investment threshold XF . Intu-
itively, M is negative as MXβ2 corrects for the fact that when X(t) reaches XF ,
the follower enters the market which ends the leader’s monopolistic privilege.
Note that the follower would never invest just to enter into a mothballing state.
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