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Abstract

In this paper we propose a dynamic discrete-time model based on a recursive op-

timization criterion that allows to characterize risk aversion in an oligopolistic frame-

work represented by homogeneous non-storable good, sticky prices and uncertainty.

Our model nests the classical dynamic oligopoly model with sticky prices à la Fershtman

and Kamien (1987) that can be viewed as the continuous-time limit of our base model

with no uncertainty and no risk aversion. In particular, we focus on the continuous-time

limit of the infinite horizon formulation and show that the optimal production strategy

and the consequent equilibrium price are, respectively, directly and inversely related to

the degrees of uncertainty and risk-aversion. However, the effect of uncertainty and

risk-aversion crucially depends on the price stickiness hypothesis since, when prices can

adjust instantaneously, the steady-state equilibrium of our model with uncertainty and

risk aversion collapses to Fershtman and Kamien’s analogous.

1 Introduction

How do price stickiness, uncertainty and risk aversion affect the equilibrium outcome of a

dynamic oligopoly where firms compete over the demand of a homogeneous, non-storable

good? This might be a relevant question for electricity markets where end-use consumers

are served by few firms selling a good which is perfectly homogeneous and cannot be stored

(at least at reasonable costs). Moreover, retail prices in electricity markets adjust only very

gradually to changes in market conditions. In fact, wholesale electricity prices change hour

*
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by hour while retail prices change only few times per year (Borenstein and Holland, 2005).

According to Bils and Klenow (2004), for instance, in 1994-1996 the average monthly fre-

quency of price changes in the US electricity market was 43.4 percent, corresponding to an

average time between price variations of about 1.8 months. Such price stickiness is also

a regulatory issue as it may represent an obstacle for having efficient prices, that is prices

which are closely tied to variations in the marginal cost of generating electricity (Joskow and

Wolfram, 2012).

To provide an answer to the question above, we establish a differential oligopoly game

where firms are managed by risk averse entrepreneurs and produce a non-storable good

in an uncertain framework characterised by price stickiness. In differential games some

variables evolve over time according to a differential (or difference) equation and players

conform their strategic and forward-looking behaviors to an optimal control rule (Dock-

ner, Jorgensen, Van Long, and Sorger, 2000). Applications of differential games in eco-

nomics are widespread and include macroeconomics, international trade and environment

(see Turnovsky, Basar, and D’Orey (1988), Dockner and Haug (1990), van der Ploeg and

De Zeeuw (1992) and Dockner and Long (1993) among the others). In industrial organi-

zation differential games have been fruitfully employed to investigate dynamic oligopolies

characterized by some form of cost adjustments (Driskill and McCafferty (1989), Karp and

Perloff (1989), Karp and Perloff (1993) and Wirl (2010), among the others) and the first ap-

plications to an oligopoly problem with sticky prices are Simaan and Takayama (1978) and

Fershtman and Kamien (1987). Both papers employ the same continuous time dynamic

duopoly model with identical firms, linear demand functions and quadratic costs. Produc-

tion and price are, respectively, the control and the state variables and price stickiness is

modeled by assuming that price adjusts according to a differential equation that is function

of the difference between the current price and the price indicated by the demand function

for the currently produced quantities.

We propose a discrete-time model based on a recursive optimization criterion that allows

to characterize risk aversion in an oligopolistic framework with sticky prices and uncer-

tainty. Such model nests the classical dynamic oligopoly with sticky prices à la Fershtman

and Kamien (1987) that can be viewed as the continuous-time limit of our base model with

no uncertainty and no risk aversion. We derive the optimal (subgame perfect) production

strategy, and the corresponding equilibrium price, to be compared to both open-loop and

closed-loop (feedback) Nash equilibria analysed in Fershtman and Kamien (1987). Under

open-loop strategy firms decide a production plan at time zero and stick to it forever while

under feedback strategy firms adapt their decisions in every instant of time by taking into

account the current value of price. Therefore, if a price reduction occurs under the feedback

hypothesis, no commitment is possible or credible and each firm increases its production

2



taking into account that all its rivals are doing the same. As a consequence, in Fershtman

and Kamien (1987) the steady state level of production arising in a (symmetric) feedback

Nash equilibrium is greater than the steady state level of production arising in a (symmet-

ric) open-loop equilibrium and both are greater than the equilibrium level of production

of the corresponding static Cournot game. Consequently the feedback equilibrium is char-

acterized by a stationary price which is lower than the stationary price of the open-loop

equilibrium that, in turn, is lower than the equilibrium price of static Cournot game. Fersht-

man and Kamien (1987) show also that, when price adjusts instantaneously, the steady state

equilibrium price converges to the static Cournot equilibrium price if firms use open-loop

strategies, while it converges to a lower value if firms follow feedback strategies. Therefore,

removing price stickiness is not sufficient to allow that a dynamic oligopoly converges to its

static counterpart as this convergence requires also that firms can precommit to their initial

output strategies. This result is intriguing since open loop strategies are judged less inter-

esting than feedback strategies for the study of dynamic games (Tsutsui and Mino, 1990)

because they are generally not subgame perfect1.

The model developed by Fershtman and Kamien (1987) has been extended in several di-

rections. Dockner (1988), for instance, generalizes it to the case of more than two firms2

showing that the dynamic oligopoly price converges to the long run (zero profit) competi-

tive price when the number of firms goes to infinity, independent of the assumption of open-

loop or feedback strategy. Tsutsui and Mino (1990) introduce the possibility of price ceilings

to consider the case of nonlinear feedback strategies finding that, when the price ceiling

is not too high, feedback equilibrium prices can be higher than the equilibrium price that

arises under the linear feedback strategy assumed by Fershtman and Kamien (1987). Piga

(2000) shows that when firms can invest in advertising the nonlinear feedback equilibrium

price may be greater than the open-loop equilibrium price while the latter is above the linear

feedback equilibrium price. Other extensions include ? and ?, who analyze the profitability

of horizontal mergers, Cellini and Lambertini (2007),dealing with the case of firms selling

differentiated products and Wiszniewska-Matyszkiel, Bodnar, and Mirota (2015), focusing

on firms’ behavior off the steady-state price path.

To the best of our knowledge differential oligopolistic games with sticky prices have been

always analyzed in deterministic contexts and our paper is the first attempt of extending the

feedback strategy model of Fershtman and Kamien (1987) with the inclusion of uncertainty

and risk aversion. Such extension allows to show that uncertainty and risk aversion affect

the steady-state equilibrium as the optimal production strategy and the consequent equilib-

1See Cellini and Lambertini (2004) for a short review of the papers showing under what conditions open-
loop strategies can be subgame perfect.

2A similar extension is also developed by Cellini and Lambertini (2004).
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rium price are, respectively, directly and inversely related to the degrees of uncertainty and

risk-aversion. However, the impact of uncertainty and risk-aversion on the optimal produc-

tion strategy crucially depends on the price stickiness hypothesis. In fact, we show that,

even in presence of uncertainty and risk-aversion, when prices can adjust instantaneously,

the steady state equilibrium collapses to Fershtman and Kamien’s analogous.

The rest of the paper is organised as follows. In Section 2 we first introduce uncertainty and

risk-aversion in a discrete-time formulation of a market for a non-storable good with sticky

prices, then we consider its continuous-time limit and derive several theoretical results and

empirical implications. In Section 3 we concentrate on the stationary solution for the infi-

nite horizon formulation and derive important comparative statics result pertaining to the

impact of risk-aversion, uncertainty and the number of firms. Finally, Section 4 investigates

what happens to the stationary equilibrium of the infinite horizon formulation when time-

discounting collapses to zero and when prices become either infinitely sticky or perfectly

flexible. The proofs of all results discussed in the paper relegated in a separate Appendix.

2 A Market for a Non-storable Good with Sticky Prices

We start from a discrete-time formulation of a market for a non-storable good with sticky

prices which allows to introduce uncertainty and risk-aversion in a simple, intuitive and

tractable manner. We then consider its continuous-time limit and derive several theoreti-

cal results and empirical implications. The discrete-time formulation is set out so that its

continuous-time limit is consistent with that of Fershtman and Kamien (1987). In this way

we can unveil the impact of uncertainty and risk-aversion on a market for a non-storable

good with sticky prices, comparing our analysis vis-à-vis the existing literature on differen-

tial games for markets with price-inertia and imperfect competition.

2.1 A Discrete-time formulation

Let us assume that production and consumption take place at equally spaced in time mo-

ments between time 0 and time T. These moments are t1, . . .,tn, tn+1, . . ., tN, where tn+1 =

tn + ∆, with ∆ some positive interval of time, while tN coincides with the final date T in

which production is interrupted. This value can easily be pushed towards infinity to con-

sider an infinite horizon formulation and consequently study a stationary equilibrium. Pe-

riod n will correspond to time tn. The continuous-time limit will be reached when ∆ con-

verges to zero. The discrete-time counterpart of the continuous-time formulation for the
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dynamics of the price of the non-storable consumption good is as follows

pn+1 = µ ∆ + (1 + a∆) pn + b∆xn + εn+1 , (1)

where pn is the price of the non-storable good at time tn, ∆xn is the corresponding quantity

produced and brought to the market, εn+1 is an idiosyncratic shock to its demand function,

with εn+1 ∼ N(0, σ2
ε ∆), while a, b and µ are constants.

The quantity produced and brought to the market ∆xn is the product of the time interval

∆ and the output rate/intensity xn for period n. [Fershtman and Kamien refer to ui as firm i’s

output rate.] In oligopoly, where M identical firms produce the non-storable good, ∆xn =

∆u1,n + ∆u2,n . . . + ∆uM,n, where ∆um,n corresponds to the quantity produced by firm m in

period n. This is the product of ∆ and firm m’s output rate/intensity um,n. In order to

concentrate on symmetric equilibria we assume the M firms are perfectly symmetrical in

that they share the same cost function, while the entrepreneurs which own and run them

share the same degree of risk-aversion.3

Now, without loss of generality, let us analyze the optimal production strategy of firm 1.

As in Fershtman and Kamien (1987) firm 1 is characterized by quadratic production costs.

Specifically, in n the intensity of these costs is qu2
n, where q is a positive constant and where

for simplicity we write u1,n = un. The sale of the non-storable good generates a revenue

which is linear in the quantity brought to the market. This implies that the intensity of the

firm’s revenue in n is pnun, while that of the corresponding profits is pnun − qu2
n.

In Fershtman and Kamien (1987) the entrepreneur maximizes the discounted value of the

profits her firm generates. In our formulation, as the price at which the firm will be able to

sell the quantity of the non-storable good it produces is subject to idiosyncratic shocks, such

profits are uncertain. Therefore, we assume the entrepreneur is risk-averse and is endowed

with a special form of recursive preferences proposed by Hansen and Sargent (Hansen and

Sargent, 1995). In particular in period n, with n = 1, 2, . . . , N, the entrepreneur solves the

following recursive optimization

Vn = min
un

{
∆cn +

2
ρ

ln
(

En

[
exp

(
δ∆ ρ

2
Vn+1

)])}
, (2)

where ρ (with ρ > 0) is a risk-enhancement coefficient, δ (with 0 < δ < 1) is a time-

discounting factor, ∆cn is the (per-period) cost function, with cn = qu2
n − pnun, and Vn is

the value function (with final condition VN+1 = 0).

The optimization criterion in (2) accommodates risk-aversion through the curvature of the

3With different degrees of risk-aversion on the part of the M entrepreneurs we would not be able to con-
centrate on symmetric equilibria.
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exponential function. As the convexity of ln(E[exp(δ∆ ρ
2 Vn+1)]) increases with ρ, this co-

efficient determines the entrepreneur’s degree of risk-aversion. Importantly, for ρ ↓ 0, the

recursive optimization in (2) converges to Vn = minun En[∆cn + δ∆Vn+1].4 As this is the

Bellman equation a risk-neutral entrepreneur will solve in our formulation, we conclude

that our formulation subsumes that of Fershtman and Kamien, when ρ = 0, and extends it

by allowing for risk-sensitive preferences, when ρ > 0.

Exploiting results by Vitale (2017) the following Lemma can be established.

Lemma 1 When M identical firms operate in the oligopolistic market for the production of the non-

storable good, in period n the optimal production strategy of a generic firm is

un = κp,n pn + κe,n(π̃n+1µ∆ − ϑ̃n+1) , with (3)

κp,n =
1
2 − b(1 + a∆)π̃n+1

q + M b2∆π̃n+1
, κe,n = − b

q + Mb2∆π̃n+1
, (4)

π̃n+1 = δ∆πn+1(1− δ∆ρ σ2
ε ∆ πn+1)

−1 , ϑ̃n+1 = δ∆ϑn+1(1− δ∆ρ σ2
ε ∆ πn+1)

−1 , (5)

πn = ∆q κ2
p,n − ∆ κp,n +

[
(1 + a∆) + M b ∆ κp,n

]2
π̃n+1 , (6)

ϑn = [1 + (M− 1)bπ̃n+1 ∆ κe,n][Mb ∆ κp,n + (1 + a∆)](ϑ̃n+1 − π̃n+1µ∆) (7)

and boundary conditions πN+1 = 0 and ϑN+1 = 0.

Proof. See the Appendix.

Solving the recursive system of equations (4), (5), (6) and (7) for n = 1, 2, . . . , N, with the

boundary conditions πN+1 = 0 and ϑN+1 = 0 is fairly cumbersome and can be achieved

only numerically. However, we are interested in investigating what happens when we con-

sider the continuous-time limit, for ∆ ↓ 0.

2.2 The Continuous-time Limit

For ∆ ↓ 0 this discrete-time formulation converges to a continuous-time limit. In particular,

the continuous-time counter-part of equation (1) is given by the following expression

dp(t)
dt

= µ + ap(t) + bx(t) + ε(t) ,

4The proof of these and other results are available on request. See also Vitale (2017).
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where x(t) = u1(t) + . . . + uM(t). Now suppose we define s = −a, β = b/a, α = µ/s. We

can then write that

dp(t)
dt

= s(α − βx(t) − p(t)) + ε(t) . (8)

Importantly, for M = 2, β = 1 and ε(t) ≡ 0 we have equation (1.2) in Fershtman and Kamien

(1987). Given our formulation the condition that no variation in the price is expected is

Et

[
dp(t)

dt

]
= 0 .

Following Fershtman and Kamien (1987) it can be said that if this condition is met the good

market is in equilibrium, in that the good price corresponds to that which is found in the

demand function for that level of production. This condition corresponds to the following

expression

p(t) = α − βx(t) .

This expression represents an inverse demand function which would prevail in a static

model in which prices are fully flexible. In the dynamic model prices are sticky. When

a production decision is taken, the good price does not reach immediately its equilibrium

value. However, let p∗(t) ≡ α − βx(t) be such a price. Substituting it out in equation (8)

we find that

dp(t)
dt

= − s (p(t) − p∗(t)) + ε(t) , (9)

which unveils a mean-reverting dynamics toward the equilibrium price. The speed of con-

vergence towards the long-run equilibrium is determined by the the coefficient s, whose

inverse can then be considered a measure of price stickiness.

Using Lemma 1 it is possible to prove the following Proposition, which characterizes the

optimal production strategy of the generic firm in the continuous-time limit.

Proposition 1 When M identical firms operate in the oligopolistic market for the production of the

non-storable good, in t the optimal production strategy of the generic firm is

u(t) = κ(t) p(t) +
b
q

ϑ(t), with κ(t) =
1
q

(
1
2
− bπ(t)

)
(10)
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and π(t) and ϑ(t) satisfying the following differential equations

dπ(t)
dt

− 1
q

(
bπ(t)− 1

2

)(
(2M− 1)bπ(t) − 1

2

)
+ (2a + ln δ)π(t) + ρσ2

ε π(t)2 = 0 , (11)

dϑ(t)
dt

+

(
ln δ + a +

M
2

b
q

)
ϑ(t) −

(
(2M− 1)

b2

q
− ρσ2

ε

)
π(t)ϑ(t) − µπ(t) = 0 , (12)

with boundary conditions π(T) = 0 and ϑ(T) = 0.

Proof. See the Appendix.

Solving the two differential equations in Proposition 1 is involved. In particular, an explicit

solution exists only for the former and hence numerical procedures are called for to describe

the dynamics of the equilibrium presented in Proposition 1. However, in the infinite horizon

formulation, where the final date T is pushed forward to infinite, we easily characterize a

stationary equilibrium in which

κ(t) = κ̄ , π(t) = π̄ and ϑ(t) = ϑ̄ .

3 Comparative Statics

3.1 Risk-aversion and Uncertainty

As we concentrate on the stationary solution for the infinite horizon formulation, we have an

important result pertaining to the impact of risk-aversion and the volatility of the demand

shocks.

Proposition 2 For any parametric constellation, for a larger ρ and/or larger σε, the production strat-

egy of the oligopolistic firm in the infinite horizon formulation is more aggressive in that κ̄ is larger.

Proof. See the Appendix.

This Proposition posits that the firm will select a more aggressive production strategy when

more risk-averse and when more uncertain about future shocks to the demand function.

Intuitively the stationary price is decreasing in the risk-adjustment coefficient ρ as, ceteris

paribus, the M firms produce larger quantities of the non-storable good. Such intuition is

confirmed by the following Proposition.

Proposition 3 For any parametric constellation p∗ is decreasing in ρ, the coefficient of risk-aversion,

and σε, the volatility of demand shocks.

Proof. See the Appendix.
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3.2 The Number of Firms

An other interesting and apparently counter-intuitive result pertains to the impact of the

number of firms in the oligopolistic market. This is presented in the following Proposition.

Proposition 4 For any parametric choice κ̄ is increasing in M, the number of firms in the market.

Proof. See the Appendix.

4 The Relation Between Static and Dynamic Formulations

It is interesting to investigate what happens to the stationary equilibrium of the infinite hori-

zon formulation when time-discounting collapses to zero (δ ↓ 0) and when prices become

either infinitely sticky or perfectly flexible (s ↓ 0 and s ↑ ∞ respectively). In this respect we

have some interesting conclusions.

Firstly, for δ ↓ 0 the stationary equilibrium of the dynamic formulation converges to the

equilibrium of the static model with price-taker firms, as suggested by the following Propo-

sition.

Proposition 5 When the time-discounting factor falls to zero the stationary equilibrium with M

firms converges to the expected price, Et[pt], of the static equilibrium with price-taker firms, in that

lim
δ↓0

p∗ = pcomp , with pcomp = α
2q

Mβ + 2q
.

Proof. See the Appendix.

For M = 2 this limit coincides with the competitive equilibrium of the static formulation of

the model presented by Fershtman and Kamien (1987) when c = 0.

Clearly, this result is not surprising at all. As δ collapses to zero firms do not take into

account future profit opportunities and since prices are sticky they just behave as price-taker

agents.

A graphical representation of this intuitive, and in some sense obvious, result is reported

for the monopolistic case in the top two panels of Figure 1. Here the coefficient κ̄ and the

stationary price p∗ of the dynamic model are plotted against δ and compared to the reference

values for the static formulation. Interestingly, we see that for δ > 0 the coefficient κ̄ is

smaller in the dynamic version and hence as the firm produces more slowly the equilibrium

price is larger. The difference stems from the fact that in the dynamic model the firm in time

t takes into account the impact of its current production decision on future prices and profits
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and optimally decides to restrain its production. However, when δ ↓ 0, as the management’s

concern for future profits vanquishes, its optimal production decision collapses to that of the

static formulation with price-taking behavior. In fact, for δ ↓ 0 κ̄ → κcomp, where κcomp = 1
2q

is the coefficient κ of the static formulation with price-taking behavior.

Similar conclusions are reached when s collapses to zero. Indeed, the following Proposition

holds.

Proposition 6 When prices become infinitely sticky (s ↓ 0), the stationary equilibrium converges to

the expected price, Et[pt], of the static equilibrium with M price-taker firms, in that

lim
s↓0

p∗ = pcomp .

Proof. See the Appendix.

A graphical representation of this result for the monopolistic case is also reported in Figure

3, in the bottom panels. Here the coefficient κ̄ and the stationary price p∗ of the dynamic

model are plotted against (1/s), the degree of price stickiness, and compared to the refer-

ence values for the static formulation with both strategic and price-taking behavior. Even

in this case, for s ↓ 0, as the production decision in t does not impact future prices, the op-

timal production decision collapses to that of static formulation with price-taking behavior.

However, for s > 0, as current decisions affect future prices, the management’s concern for

future profits leads it to slow its production, as witnessed by the smaller coefficient κ̄ in the

dynamic version. Interestingly, we have the following general result.

Proposition 7 When prices become perfectly flexible (s ↑ ∞), the stationary price converges to a

limit value which exceeds the expected price, Et(pt), of the static equilibrium with M price-taker

firms, in that

lim
s↑∞

p∗ > pcomp .

Proof. See the Appendix.

To qualify this and other results we had better distinguish between monopoly and oligopoly.

4.1 Monopoly

Corollary 1 For M = 1, when prices become perfectly flexible (s ↑ ∞), the stationary price con-

verges to a limit value which corresponds to the expected price, Et(pt), of the static equilibrium with

1 strategic monopolist, in that

lim
s↑∞

p∗ = pstrat .
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Indeed in the static formulation with one strategic monopolist the expected price, Et(pt),

in equilibrium is pstrat = α
(

β+2q
2(β+q)

)
. This value coincides with the limit behavior of the

stationary price for the dynamic model, p∗, when there is only one firm. Such result is

confirmed by the bottom panels in Figure 3. Here for (1/s) ↓ 0 we see that the dynamic

model coefficient κ̄ increases. However, it does not converge to the static coefficient with

a strategic monopolist, κstrat = 1
β+2q . To see this let W = (1 + 2q

β ). Then, notice that for

M = 1, κstra = 1
β+2q = 1

2q (1− g), where g = 1/W. In addition, for M = 1, lims↑∞ bπ̄ =
1
2 [W −

√
W2 − 1], which we denote with l. Since lims↑∞ κ̄ = 1

2q (1− l) and g > l we find that

lims↑∞ κ̄ > κstrat.

Interestingly, even if lims↑∞ κ̄ > κstra the stationary price of the dynamic problem converges

to the expected price of the static equilibrium with a strategic firm. This is because in the

dynamic model the production function contains the extra term b
q ϑ which for s ↑ converges

to the negative value α
β

(
1− W

(W2−1)1/2

)
. All in all, for s ↑ ∞ κ → κdyn > κstra and p∗ → pstra,

i.e. the value corresponding to the expected price, Et(pt), of the static equilibrium with a

strategic firm.

In general for 0 < s < ∞ we conjecture that the following inequalities hold,

pcomp < p∗ < pstra , (13)

κcomp > κ > κstra , (14)

so that in the general case, for s positive but finite, the stationary equilibrium lies in between

the two extremes of the strategic and competitive static equilibria. This is clearly borne out

by the bottom panels of Figure 3.

4.2 Oligopoly

Corollary 2 For M > 1, q = 1/2 and β = 1, when prices become perfectly flexible (s ↑ ∞), the

stationary price converges to a limit value which corresponds to a weighted average of the expected

price, Et(pt), of the static equilibrium with M price-taker and with M strategic firms, in that there

exists ω ∈ (0, 1) such that

lim
s↑∞

p∗ = ω pstrat + (1−ω) pcomp .

To see this consider that the expected price, Et(pt), of the static equilibrium with M strate-

gic firms is equal to pstrat = α 2
2+M , which can also be written as pstrat = (1 + S)pcomp,

where now pcomp = α 1
1+M , for S = M/(2 + M). As it can be established in this case that
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(
M + (M−1)Λ

Λ(M−1 + MΛ)

)
< 1 + S the result is derived.

In particular when, q = 1/2 and β = 1, pstrat =
1
2 α and pcomp = 1

3 α, while ω = 2
√

2/3
1+2
√

2/3
which coincides with the corresponding formula presented by Fershtman and Kamien (1987)

when c = 0,

lim
s↑∞

p∗ =
pcomp + 2

√
2√
3

pstrat

1 + 2
√

2√
3

.

Indeed, for M = 2 and q = 1/2 and β = 1, when s ↑ ∞ our formulation collapses to the

stochastic analogue of the static model discussed by Fershtman and Kamien (1987).5

One the one hand, this result is reassuring in that it implies that our formulation is consis-

tent with Fershtman and Kamien’s and that our analysis can be considered an extension of

theirs where the focus is on the impact of risk-aversion, uncertainty and time-horizon on the

production decisions of individual firms in a oligopolistic market. Furthermore, it shows

how the impact of risk-aversion and uncertainty on the optimal production strategies of

oligopolistic firms crucially hinges on the stickiness of the good price. Only when prices ad-

just slowly to their long-run equilibrium values the attitude of the firms’ management and

their uncertainty on the dynamics of future prices affect their production decisions. Indeed,

when s ↑ ∞ neither π̄, nor ϑ̄ (and hence κ̄) are affected by either ρ or σ2
ε as the equilib-

rium price, p(t) = α − βx(t), is immediately reached and uncertainty over future prices

vanquishes.

Figure 2 summarizes the dependence of the steady state equilibrium on δ and 1/s for M = 2

when q and β take values which differ from those employed by Fershtman and Kamien. In

particular the bottom panels refer to the dependence of the stationary price and κ̄ on the

degree of price stickiness, 1/s. Results are in line with those outlined for q = 1/2 and β = 1.

Specifically they are consistent with Corollary 2.

Propositions 6 and 7 propose some further interesting results. In particular, while in a mo-

nopolistic market when prices become perfectly flexible the management of the single firm

will not consider the impact of its current production decision on future profits and hence

the equilibrium converges to the static equilibrium with strategic behavior, when several

firms operate in the market, Cournot competition will induce market participants to pro-

duce more moving the equilibrium price towards the competitive price. Once again this

feature of the equilibrium, is related to the market structure rather than to uncertainty and

attitude towards risk.

5To see the correspondence one needs to adjust notation. Thus, our π̄ and ϑ̄ correspond to their − 1
2 K and

− 1
2 E. Then, as b = −as, we see that for a = 1, β = 1 and q = 1/2 our formulae for u(t) and the value function

V coincide with theirs for c = 0. In addition, for r = − ln δ equations (B.2) for π̄ and (B.4) for ϑ̄ coincide with
theirs for K and E.
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Appendix

Proof of Lemma 1

Suppose firm 1’s enterpreneur conjectures that in n firms 2, 3, . . ., M will all choose to produce the

same quantity ∆yn. In addition, assume that Vn+1 = πn+1 p2
n+1 − 2ϑn+1 + νn+1, where πn+1 and

ϑn+1 are some time-variant coefficients. Under this assumption, Lemma 4 in Vitale (2017) shows that

solving the recursion in (2) is equivalent to solving the double recursion

Fn(pn) = L L̃ Fn+1(pn+1) , where Fn+1 ≡ πn+1 p2
n+1 − 2ϑn+1 ,

L̃ φ(p) = max
ε

[
δπ(p + ε)2 − 2δϑ(p + ε) − 1

ρ

1
σ2

ε ∆
ε2
]

and

L φ(p) = min
u

[
∆c + φ

(
µ∆ + (1 + a∆) p + b∆ [u + (M− 1)y ]

)]
.
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Applying the L̃ operator to Fn+1 we find that L̃Fn+1(pn+1) = π̃n+1 p2
n+1 − 2ϑ̃n+1 pn+1 with π̃n+1 =

δ∆πn+1(1 − δ∆ρ σ2
ε ∆ πn+1)

−1, ϑ̃n+1 = δ∆ϑn+1(1 − δ∆ρ σ2
ε ∆ πn+1)

−1 and the second order condition

that δ∆πn+1 − 1
ρ

1
σ2

ε
< 0, which will always be satisfied insofar πn+1 < 0.

In applying the L operator to Fn+1(pn+1) = π̃n+1 p2
n+1− 2ϑ̃n+1 pn+1 we find the following first order

condition

(q + b2∆π̃n+1) un +

(
b(1 + a∆)π̃n+1 −

1
2

)
pn + (M− 1)b2∆π̃n+1yn + b(π̃n+1µ∆− ϑ̃n+1) = 0

and hence the optimal production is

un =
1
2 − b(1 + a∆)π̃n+1

q + (M− 1)b2∆π̃n+1
pn −

(M− 1)b∆π̃n+1

q + (M− 1)b2∆π̃n+1
yn −

b(π̃n+1µ∆− ϑ̃n+1)

q + (M− 1)b2∆π̃n+1
. (A.1)

Crucially, firm 1’s conjecture will need to be verified in equilibrium. This is trivially achieved by as-

suming a symmetric equilibrium in that we posit that un = yn. Under such restriction from equation

(A.1) it is established that

un = κp,n pn + κe,n(π̃n+1µ∆ − ϑ̃n+1) , with

κp,n =
1
2 − b(1 + a∆)π̃n+1

q + M b2∆π̃n+1
and κe,n = − b

q + Mb2∆π̃n+1
.

Inserting this expression into the argument of the L operator it is found that

πn = ∆q κ2
p,n − ∆ κp,n +

[
(1 + a∆) + M b ∆ κp,n

]2
π̃n+1 ,

ϑn = [1 + (M− 1)bπ̃n+1 ∆ κe,n][Mb ∆ κp,n + (1 + a∆)](ϑ̃n+1 − π̃n+1µ∆) . 2

Proof of Proposition 1

Reconsider the optimal production strategy described in Lemma 1. In the limit, for ∆ converging to

zero (M−1)b∆π̃n+1
q+(M−1)b2∆π̃n+1

→ 0. In addition, for ∆ ↓ 0, as π̃n+1 → π(t) (while ϑ̃n+1 → ϑ(t)),
1
2−b(1+a∆)π̃n+1

q+(M−1)b2∆π̃n+1

converges to 1
q

( 1
2 − bπ(t)

)
, while − b(π̃n+1µ∆−ϑ̃n+1)

q+ (M−1)b2∆π̃n+1
converges to b

q ϑ(t).

Hence, in the limit, the optimal demand function for firm 1in t is

u(t) = κ(t) p(t) +
b
q

ϑ(t) , with κ(t) =
1
q

(
1
2
− bπ(t)

)
,

where κ(t) = lim∆↓0 κp,n, b
q = lim∆↓0 κe,n, π(t) = lim∆↓0 πn and ϑ(t) = lim∆↓0 ϑn. To identify the limit

functions π(t) and ϑ(t), firstly consider that since [(1 + a∆) + M b∆ κn]
2 = (1+ 2a∆) + 2 M b ∆ κn +

17



o(∆2), it follows that equation (6) can also be written as

πn = π̃n+1 + ∆(q κ2
p,n − κp,n + 2a π̃n+1 + 2 M b κp,n π̃n+1) + o(∆2) ,

where o(∆) indicates a term of order ∆ or superior. This implies that

πn − πn+1

∆
=

π̃n+1 − πn+1

∆
+ 2a π̃n+1 + κp,n(q κp,n − 1 + 2 M b π̃n+1) + o(∆) .

Notice, that it can be established that

κn(q κp,n − 1 + 2 M b π̃n+1) = −
(

1
2 − bπ̃n+1

q + M b2∆π̃n+1

) (
q

1
2 − (2M− 1) bπ̃n+1

q + M b2∆π̃n+1

)
+ o(∆) .

Now, lim∆↓0
πn −πn+1

∆ = − dπ(t)
dt , lim∆↓0

π̃n+1−πn+1
∆ = ln δ π(t)+ ρσ2

ε π(t)2 and lim∆↓0 π̃n+1 = lim∆↓0 πn+1 =

π(t). Given the expression above we also see that lim∆↓0 κp,n(q κp,n − 1 + 2 M b π̃n+1) = − 1
q (

1
2 −

bπ(t))( 1
2 − (2M − 1) bπ(t)). We conclude that in the limit π(t) solves the following differential

equation

dπ(t)
dt

− 1
q

(
bπ(t) − 1

2

)(
(2M− 1)bπ(t) − 1

2

)
+ 2a π(t) + ln δ π(t) + ρσ2

ε π(t)2 = 0 .

Similarly, equation (7) can also be written as follows

ϑn = ϑ̃n+1 + ∆
(

a + M b κp,n + (M− 1) b κe,n π̃n+1 + o(∆)
)

ϑ̃n+1 − ∆(µ + o(∆)) π̃n+1 ,

so that

ϑn − ϑn+1

∆
=

ϑ̃n+1 − ϑn+1

∆
+

(
a + M b κp,n + (M− 1) b κe,n π̃n+1

)
ϑ̃n+1 − µπ̃n+1 + o(∆)) .

Considering that lim∆↓0
ϑn − ϑn+1

∆ = − dϑ(t)
dt , lim∆↓0

ϑ̃n+1− ϑn+1
∆ = ln δ ϑ(t) + ρσ2

ε ϑ(t)2, lim∆↓0 ϑ̃n+1 =

lim∆↓0 ϑn+1 = ϑ(t) and that lim∆↓0 Mκp,n = M b
q (

1
2 − bπ(t)) and lim∆↓0(M − 1)bκe,nπ̃n+1 = (M −

1) b2

q π(t), we conclude that in the limit ϑ(t) solves the second differential equation

dϑ(t)
dt

+

(
ln δ + a +

M
2

b
q

)
ϑ(t) −

(
(2M− 1)

b2

q
− ρσ2

ε

)
π(t)ϑ(t) − µπ(t) = 0 .

Proof of Proposition 2.

We rely on a graphical argument. In Figures A.1 and A.2 we show how the determination of π̄

changes when either ρ or σ2
ε augments. In Figure A.1 we consider the case in which (2M− 1) b2

q > ρσ2
ε ,

while in Figure A.2 that in which(2M− 1) b2

q < ρσ2
ε .

Both Figures allow to determine what happens when an increase in ρ and/or in σ2
ε brings about a

reduction in γ (γ = (2M − 1) b2

q − ρσ2
ε ). In both cases graphical inspection shows that for a larger

18



degree of risk-aversion and/or a larger volatility of the demand shocks the stationary value π̄, which

is always negative, rises. Then, since κ̄ = 1
q

( 1
2 − b π̄

)
and −b is positive we see that κ̄ is increasing

in π̄. Then, we conclude that for a larger ρ and/or a larger σ2
ε κ̄ is larger. 2

Proof of Proposition 3.

To establish this result we start by recalling that p∗ is the ratio between1 +
M b2

q π̄

ln δ + a + M
2

b
q −

(
(2M− 1) b2

q − ρσ2
ε

)
π̄

 µ and − a − M bκ̄ .

Then, we notice that in Proposition 2 we proved that π̄ and κ̄ are increasing in ρ and σε. In addition,

we notice that−a−Mbκ̄ is increasing in κ̄. This implies that−a−Mbκ̄ is increasing in ρ and σε. This

means that to establish our result we need to prove that the derivatives of the ratio

M b2

q π̄

ln δ + a + M
2

b
q −

(
(2M− 1) b2

q − ρσ2
ε

)
π̄

with respect to ρ and with respect to σε are negative, so that this ratio is proved to be decreasing in

these two parameters. Consider that this ratio can also be written as

Gπ̄

H − Iπ̄
,

where G > 0 and H < 0. The derivative of this ratio wrt ρ (equivalently with respect to σε) is

1
(H − Iπ̄)2

[
G(H − Iπ̄)

dπ̄

dρ
− Gπ̄

(
−I

dπ̄

dρ
− dI

dρ
π̄

)]
=

G
(H − Iπ̄)2

[
H

dπ̄

dρ
+ π̄2 dI

dρ

]
.

This expression is negative. In fact, G
(H− Iπ̄)2 is positive, while H dπ̄

dρ is negative, since H is negative

and dπ̄
dρ is positive. Finally, π̄2 dI

dρ is negative because clearly dI
dρ is negative. An identical argument

applies to σε. This proves that p∗ is decreasing in both ρ and σε. �

Proof of Proposition 4.

As b is negative, it is sufficient to show that π̄ is increasing in M. Consider that π̄ corresponds to

π̄ = − 1
2

λ

γ
+

1
2

∆
γ

, where ∆ =

[
λ2 − 1

q
γ

]1/2

.

This can be found considering the intersection between the parabola γ π̄2 and the straight line−θ−
λπ̄. Considering that λ > 0 and θ > 0, this line presents negative slope and intercept. As for the

parabola, it will be convex (concave) if γ is positive (negative).

In Figure A.3 we have a graphical representation of two functions for γ positive. The straight line

and the parabola intersect twice, for two negative values of π̄. Considering that π̄− = − 1
2

λ
γ + 1

2
∆
γ

and π̄+ = − 1
2

λ
γ + 1

2
∆
γ and that γ and ∆ are positive, we conclude that π̄+ is the larger value for

which the straight line and the parabola intersect. When M augments graphical inspection shows
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that π̄ rises. For γ negative, when M rises, graphical inspection does not allow to determine the

direction in which π̄ changes in that the shifts in the straight line and parabola push π̄ in opposite

directions as illustrated by Figure 8. To determine the prevailing effect on π̄ we need to apply an

implicit function argument.

Given that the equation γ π̄2 + λ π̄ + θ = 0, can be written as F(M, π̄) = 0, so that

dF =
∂F
∂M

dM +
∂F
∂π̄

dπ̄ = 0 ,

which implies that

dπ̄

dM
= − ∂F

∂M
/

∂F
∂π̄

.

Now

dπ̄

dπ̄
= 2γ π̄ + λ and

∂F
∂M

=
b
q

π̄ (2bπ̄ − 1) .

We consider the sign of such derivative for π̄ = π̄+. Since λ > 0, for γ negative γπ̄+ > 0 and hence
dπ̄
dM is positive. In addition, since b

q π̄+ > 0, ∂F
∂π̄ is negative iff 2bπ̄+ < 1. If this is established then

dπ̄
dM > 0. To see that 2bπ̄+ < 1 consider that when γ is negative π̄+ > − θ

λ , so that (given that b < 0)

bπ̄+ < −b θ
λ . Then, if −b θ

λ is smaller than 1/2 at fortiori 2bπ̄+ < 1. To see that −b θ
λ < 1/2 consider

that this is equivalent to

−bθ

λ
=

1
4

b
q

2a + ln δ + M b
q

<
1
2
⇔ 1

2
b
q

> 2a + ln δ + M
b
q

,

which is really the case as a, b and ln δ are negative. 2

Proof of Proposition 5.

It is sufficient to notice that for δ ↓ 0 both π̄ and ϑ̄ converge to zero, so that the optimal production

strategy for the M firms is u(t) = 1
2q p(t), that is that in the static formulation when the firms’ manage-

ment takes the good price as given. In addition, the stationary price, p∗, converges to p∗ = α
2q

Mβ+2q ,

which corresponds to the expected good price, Et[pt], in the static formulation when the firms’ man-

agement takes such price as given. 2

Proof of Proposition 6.

As before notice that for s ↓ 0 both π̄ and ϑ̄ converge to zero, so that u(t) = 1
2q p(t), while the

stationary price converges to p∗ = α
2q

Mβ+2q . 2

Proof of Proposition 7.

Let w = bπ̄. For s ↑ ∞, p∗ converges to the ratio between

α
1 + M

2
β
q − (M− 1) β

q w

1 + M
2

β
q − (2M− 1) β

q w
and

(
1 +

M
2

β

q

) (
M− 1

2M− 1

)
−
(

M
2M− 1

)
1
2

β

q
Γ1/2 ,
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where Γ =
(

M + 2 q
β

)2
− (2M− 1). This implies that

lim
s↑∞

p∗ = α
M
(

1 + M
2

β
q

)
+ (M− 1) 1

2
β
q Γ1/2

1
2

β
q Γ1/2

(
(M− 1)

(
1 + M

2
β
q

)
+ M 1

2
β
q Γ1/2

) .

This can be rewritten as

lim
s↑∞

p∗ = α
2q

(2q + M β)

(
M + (M− 1)Λ

Λ(M− 1 + MΛ)

)
, where Λ =

1
2

β

q
Γ1/2(

1 + M
2

β
q

) .

As
(

M + (M−1)Λ
Λ(M−1 + MΛ)

)
> 1 the result is established. 2

−θ − λπ

γ′ θ2γ θ2

π̄
π̄′

π

−θ

Figure A.1: The determination of π̄ for (2M− 1) b2

q > ρσ2
ε . For any choice of ρ and σ2

ε there are two intercep-

tions between the straight line and the parabola. That closer to the origin corresponds to π̄+ = − 1
2

λ
γ + 1

2
∆
γ .

When either ρ or σ2
ε rises, so that γ falls to γ′, the parabola moves downward (while the straight line is un-

affected given that λ and θ are independent of these two parameters) and the stationary value moves up to
π̄′.
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−θ − λπ

γ θ2

γ′ θ2

π̄

π̄′ π

−θ

Figure A.2: The stationary value π̄ for (2M− 1) b2

q < ρσ2
ε . For any choice of ρ and σ2

ε there are two interceptions

between the straight line and the parabola. That smaller one corresponds to π̄+ = − 1
2

λ
γ + 1

2
∆
γ . When either ρ

or σ2
ε rises, so that γ falls to γ′, the parabola moves downward and the stationary value moves up to π̄′.

22



−θ − λπ

γ′ θ2 γ θ2

−θ − λ′π

π̄ π̄′

π

−θ

Figure A.3: The stationary value π̄ for γ positive. For any choice of M there are two interceptions between the
straight line and the parabola. That closer to the origin corresponds to π̄+ = − 1

2
λ
γ + 1

2
∆
γ . When M increases

λ rises to λ′ and γ to γ′ , while θ is unaffected. This means that the straight line rotates clockwise, while the
parabola moves upward. The stationary value moves up to π̄′.
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−θ − λπ

−θ − λ′π

γ θ2

γ′ θ2

π̄′

π̄ π

−θ

Figure A.4: The stationary value π̄ for γ negative. For any choice of M there are two interceptions between
the straight line and the parabola. One is negative and the other positive. The former corresponds to π̄+ =

− 1
2

λ
γ + 1

2
∆
γ . When M increases λ rises to λ′ and γ to γ′ , while θ is unaffected. This means that the straight

line rotates clockwise, while the parabola moves upward. The stationary value moves up to π̄′.
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Supplementary Material

B.1. Solution to the Differential Equations in Proposition 1.

Consider the former differential equation. We can write it as

d π(t)
d t

= h0 + h1π(t) + h2π(t)2 ,

with h0 = 1/(4q), h1 = −(2a + Mb/q + ln δ), h2 = (2M − 1)b2/q − ρσ2
ε . This can be transformed

into a homogeneous ordinary differential equation of order two,

d2 z(t)
d2 t

− h1
d z(t)

d t
+ h0 h2 z(t) = 0 , with π(t) = − 1

h2

d z(t)
d t

z(t)
.

Assume then that z(t) = m exp(ζ t). We have a solution of the ODE iff

ζ2 m exp(ζ t) − ζ h1 m exp(ζ t) + h0 h2 m exp(ζ t) = 0 , ie. iff

m ζ2 − m h1 ζ + m h0 h2 = 0 .

This admits two roots equal to ζ =

{
ζ1 = 1

2 h1 + 1
2

√
D

ζ2 = 1
2 h1 − 1

2

√
D

, with D = h2
1 − 4h0h2. Thus, z(t) =

m1 exp(ζ1 t) + m2 exp(ζ2 t). Given that π(t) = − 1
h2

d z(t)
d t

z(t) , we can write that

π(t) = − m1 ζ1 exp(ζ1 t) + m2 ζ2 exp(ζ2 t)
((2M− 1) b2

q − ρ σ2
ε ) (m1 exp(ζ1 t) + m2 exp(ζ2 t))

.

We can impose the terminal condition π(T) = 0 to find that

m1 ζ1 exp(ζ1 T)+m2 ζ2 exp(ζ2 T) = 0 ⇔ m2 = − ζ1

ζ2
m1 exp((ζ1− ζ2) T) = − ζ1

ζ2
m1 exp(

√
D T) .

Re-inserting this expression in that for π(t) we find that

π(t) = − 1

((2M− 1) b2

q − ρ σ2
ε )

(
ζ1 exp(ζ1 t) − ζ1 exp(

√
D T) exp(ζ2 t)

exp(ζ1 t) − ζ1
ζ2

exp(
√
D T) exp(ζ2 t)

)

= − ζ1

((2M− 1) b2

q − ρ σ2
ε )

(
1 − exp(

√
D T) exp(−(ζ1 − ζ2) t)

1 − ζ1
ζ2

exp(
√
D T) exp(−(ζ1 − ζ2) t)

)

= − ζ1

((2M− 1) b2

q − ρ σ2
ε )

(
1 − exp(−

√
D (t− T))

1 − ζ1
ζ2

exp(−
√
D (t− T))

)

= − ζ1

((2M− 1) b2

q − ρ σ2
ε )

(
exp(

√
D (T − t)) − 1

ζ1
ζ2

exp(
√
D (T − t)) − 1

)
, (B.1)
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as ζ1− ζ2 =
√
D. Finally, notice that ξ1 = − 1

2

(
2a + M b

q + ln δ
)
+ 1

2

√
D and ξ2 = − 1

2

(
2a + M b

q + ln δ
)
+

1
2

√
D, with D =

(
2a + M b

q + ln δ
)2
− 1

q

(
(2M− 1)b2 − ρ σ2

ε

)
.

B.2. Properties of Stationary Coefficients.

In a stationary equilibrium

κ(t) = κ̄ , π(t) = π̄ and ϑ(t) = ϑ̄ .

From the differential equation (11) it can be established that π̄ corresponds to the negative root of the

following quadratic equation

γ π̄2 + λ π̄ + θ = 0 , (B.2)

with γ = 1
q (2M − 1) b2 − ρσ2

ε , λ = −
(

2a + ln δ + M b
q

)
and θ = 1

4
1
q . Hence, we can prove some

useful results. We start from the following Lemma.

Lemma 2 For any parametric choice the stationary value π̄ is negative.

Proof. Both λ and θ are positive, while the sign of γ depends on ρ, the firms’ coefficient of risk-

aversion, and σ2
ε , the volatility of the shocks to the demand function. A graphical representation is

provided in Figure B.1 when (2M− 1) b2

q > ρσ2
ε , so that γ is positive.

Solving for the roots of the quadratic equation in π̄, it is found that

π̄± = − 1
2

λ

γ
± 1

2
∆
γ

, where ∆ =

[
λ2 − 1

q
γ

]1/2

.

While both π̄+ and π̄− are solutions of the quadratic equation which pins down values of π(t) com-

patible with a stationary equilibrium, only the former, π̄+ = − 1
2

λ
γ + 1

2
∆
γ , corresponds to the limit

of π(t) in equation (11). In fact, inspection of such equation shows that

lim
t↓−∞

π(t) = π̄ = − ξ2

γ
, where ξ2 =

1
2

λ − 1
2

∆ .

In Figure B.1 the value of π̄ can be found considering the intersection between the parabola γ π̄2

and the straight line −θ − λπ̄. Considering that λ > 0 and θ > 0, this line presents negative slope

and intercept. As for the parabola, it will be convex (concave) if (2M− 1) b2

q is larger (smaller) than

ρσ2
ε . In the Figure the straight line and the parabola intersect twice, for two negative values of π̄.

Considering that π̄− = − 1
2

λ
γ + 1

2
∆
γ and π̄+ = − 1

2
λ
γ + 1

2
∆
γ and that γ and ∆ are positive, we

conclude that π̄+ is the larger value for which the straight line and the parabola intersect. Thus, for

γ positive it is found that π̄ is negative.

In Figure B.2 we show the determination of π̄ for (2M − 1) b2

q < ρσ2
ε . In this case γ is negative

and the parabola is concave. Because now γ is negative π̄− becomes positive and π̄+ corresponds

to the negative value of π̄ for which the straight line and the parabola intersect. Even for γ negative
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it is found that π̄ is negative. Finally, for (2M− 1) b2

q = ρσ2
ε , γ = 0 and π̄+ = −θ/λ, which is also

negative. 2

From this we immediately see that if π(t) = π̄ for all t then κ(t) = κ̄ for all t with

κ̄ =
1
q

(
1
2
− bπ̄

)
. (B.3)

Similarly, from the differential equation (12) it can be concluded that in a stationary equilibrium

ϑ̄ =
π̄

ln δ + a + M
2

b
q −

(
(2M− 1) b2

q − ρσ2
ε

)
π̄

µ . (B.4)

Another result is presented in the following Lemma.

Lemma 3 For any parametric constellation the stationary value κ̄ is positive.

Proof. Denote bπ̄ with w. This is equal to the smaller root of the quadratic equation

A w2 − Bw +
1
4

C = 0 , where

A =

(
2M− 1

q
− ρ

σ2
ε

b2

)
, B =

(
2
β
+

M
q

+
ln δ

b

)
and C =

1
q

.

Now w < 1/2. To verify this inequality notice that it is equivalent to the condition that B−
√

B2−AC
A <

1. This is equivalent to B− A <
√

B2 − AC for A > 0 and B− A >
√

B2 − AC for A < 0. Now, for

A > 0, B− A <
√

B2 − AC⇔ A[A− 2B + C] < 0⇔ A− 2B + C < 0. For A < 0 B− A >
√

B2 − AC

⇔ A[A− 2B + C] > 0⇔ A− 2B + C < 0. Now, A− 2B + C = − 4
β − ρ σ2

ε

b2 − 2 ln δ
b − 1

2
1
q . This is clearly

negative since β, ρ, q > 0 and b, ln δ < 0. 2

B.3 Positivity of the Steady-state Price.

We establish that the stationary price is positive. This is important because we have not imposed any

non-negativity constraint on either p(t) or u(t). Checking that the stationary price is positive will

show that such restrictions if imposed would not be binding.

Lemma 4 For any parametric constellation p∗ is positive.

Proof. In a stationary symmetric equilibrium,

dp(t)
dt

= a p(t) + M b u(t) + µ + ε(t) and u(t) = κ̄ p(t) +
b
q

ϑ̄ .

It follows that

dp(t)
dt

= −A p(t) + M
b2

q
ϑ̄ + µ + ε(t) , (B.5)
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with A = −(a + M b κ̄). From this it is immediately to derive that the steady-state price is

p∗ =
1
A

(
M

b2

q
ϑ̄ + µ

)
. (B.6)

Substituting the expression for ϑ̄ from equation (B.4) into (B.6) we conclude that

p∗ =
1
A

 1 +
M b2

q π̄

ln δ + a + M
2

b
q −

(
(2M− 1) b2

q − ρσ2
ε

)
π̄

 µ .

Now, considering that π̄ = −ξ2/( b2

q − ρσ2
ε ), where ξ2 = − 1

2 (2a + b
p + ln δ)− 1

2

√
D, with D = (2a +

b
q + ln δ)2 − 1

q (
b2

q − ρσ2
ε ), we can write that

ln δ + a +
M
2

b
q
−
(
(2M− 1)

b2

q
− ρσ2

ε

)
π̄ =

ln δ + a +
1
2

b
q
−
(

b2

q
− ρσ2

ε

)
π̄ + (M− 1)

b
q

(
1
2
− bπ̄

)
=

1
2

(
ln δ −

√
D
)

+ (M− 1)
b
q

κ̄ ,

which is negative, since ln δ and b are negative and D and κ̄ are positive. Similarly, M b2

q π̄ is negative,

while A = −(a + M b κ̄) is positive. Combining these three results we conclude that p∗ is positive.

�

B.4 Positivity of the Steady-State Expected Production.

The following Lemma posits that in the steady state the quantity of the non-storable good produced

by any firm is positive.

Lemma 5 For any parametric constellation the expected quantity produced by the oligopolistic firms in steady

state is positive.

Proof. In steady state the expected quantity produced by a generic firm is u∗ = κ̄p∗ + b
q ϑ̄. Since κ̄

and p∗ are positive, alongside q, while b is negative, if ϑ̄ is negative the result is established. For ϑ̄

positive the term b
q ϑ̄ is negative. Then, to check that u∗ is positive consider that ϑ̄ is the ratio between

π̄µ and R = ln δ + a + M
2

b
q − ((2M− 1) b2

q − ρσ2
ε )π̄. Since π̄µ is negative, ϑ̄ can be positive insofar R

is negative.

Hence, consider that p∗ = 1
A

(
µ + M b2

q ϑ̄
)

, with A = −(a+ Mbκ̄) > 0. Therefore, u∗ = 1
A

(
κ̄µ− a b

q ϑ̄
)

.

Since A is positive , u∗ will positive if κ̄µ− a b
q ϑ̄ > 0. Given the expression for κ̄ and A, this is equal to

µ
q

[ 1
2 −

( a+R
R

)
bπ̄
]
. Because R and a are negative 0 < a+R

R < 1. Then, since bπ̄ is positive, we see that
1
2 −

( a+R
R

)
bπ̄ < 1

2 − bπ̄. In the proof of Lemma 3 we have seen that 0 < bπ̄ < 1
2 , so that the claim

that u∗ is positive is established. 2

B.5 Stability of the Steady State.
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It is interesting to determine the properties of the dynamics of the price of the non-storable good. In

this respect we have the following result.

Lemma 6 For any parametric constellation the steady-state price p∗ is stable.

Proof. In equation (B.5) the coefficient A = −(a + Mbκ̄) is positive. Then, for ε(t) ≡ 0 this dynamic

system possesses a steady state for p∗ =
µ+ M b2

q ϑ̄

A . In fact, we can define p̂(t) ≡ p(t)− p∗, which

equivalently can be written as p(t) = p̂(t) + p∗. Given that−Ap∗+ M b2

q ϑ̄ + µ = 0, this implies that

dp(t)
dt

= − A ( p̂(t) + p∗) + M
b2

q
ϑ̄ + µ + ε(t) = − A p̂(t) + ε(t)) .

In the end, we conclude that as A > 0

Et

[
dp(t)

dt

]
> (< ) 0 ⇐⇒ p̂(t) < (> ) 0 ,

so that the steady state is stable. This is because when p̂(t) is positive, so that the price is above its

steady state value, Et

[
dp(t)

dt

]
is negative, that is the price is expected to fall (and viceversa if p̂(t) is

negative). This entails mean reversion of the price to the steady state value. 2

−θ − λπ

γ θ2

π̄

π

−θ

Figure B.1: The determination of π̄ for (2M− 1) b2

q > ρσ2
ε . For any choice of ρ and σ2

ε there are two intercep-

tions between the straight line and the parabola. That closer to the origin corresponds to π̄+ = − 1
2

λ
γ + 1

2
∆
γ .
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−θ − λπ

γ θ2

π̄
π

−θ

Figure B.2: The determination of π̄ for (2M− 1) b2

q < ρσ2
ε . For any choice of ρ and σ2

ε there are two intercep-

tions between the straight line and the parabola. That smaller one corresponds to π̄+ = − 1
2

λ
γ + 1

2
∆
γ .
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