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Abstract

This paper models conflict within a network of friendships and enmities between play-
ers. We assume that each player is either in a friendly or in an antagonistic relation
with every other player and players compete for a fixed prize by exerting costly efforts.
We axiomatically characterize a success function which determines the share of each
player given the efforts and the network of relations. This framework allows for the
study of strategic incentives and friendship formation under conflict as well as the
application of stability concepts of network theory to contests.
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1 Introduction

In many conflictual situations, we often observe that competing parties join forces to fight
together against others or refrain from fighting with each other. For instance, lobby groups
may cooperate in supporting the same legislation when their interests coincide; belligerent
states may form alliances for joint action if they face a common threat; competing firms
may collude to increase their market share and so on. These parties do not necessarily act
in a perfectly coordinated way, especially when their relation is an occasional opportunistic
cooperation rather than a long term commitment, and these relations mostly rely on
informal bilateral agreements which may form a complex network.

This paper introduces networks of relations to contest models, which are widely used to
represent conflict over scarce resources. We consider players who compete for shares of
some fixed resources by exerting costly efforts. The novelty of our setting is that each pair
of players is either in a friendly or in an antagonistic relation, and the relations between all
pairs define a network. We axiomatically characterize a success function which determines
the share of resources of each player given all efforts and the network of relations. To our
knowledge, this paper is the first to characterize a unified framework for contests defined
on any type of networks, including those where a friend of a friend is an enemy. So far,
the axiomatic work in the contest literature has exclusively focused on conflict between
groups or between individuals. In the former, players are divided into mutually exclusive
groups and groups compete with each other, while in the latter players compete all against
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all. Yet, many competitive situations lead to networks which are different than these. We
now describe three examples in international relations, political lobbying and R&D races
respectively.

(a) In international relations, an alliance can be a rather informal agreement to join
forces against common threats or to temporarily refrain from fighting against each
other. These alliances are typically opportunistic; they do not mean perfect co-
ordination or long term commitments and the friend of a friend can be an enemy
at times. For instance, the United States and the Soviet Union were well-known
to be enemies in the 1980s. However, they both supported Iraq in the Iran-Iraq
War as they both perceived post-revolutionary Iran as a threat. We illustrate the
corresponding network in Figure 1(a).

(b) Interest groups in political lobbying can have multiple characteristics. Let us describe
a very simplified example where interest groups are based on origin and gender. We
consider four interest groups defined by all combinations of native/immigrant and
woman/man. There is a fixed public budget and each group lobbies for a larger
share. The group of immigrant women lobbies for transfers to all immigrants and all
women, while indirectly helping immigrant men and native women in their lobbying
activities. This implies an informal alliance between groups that share one attribute.
On the other hand, native men always lobby in the opposite direction to immigrant
women. See Figure 1(b) for the network that represents these relations.

(c) Finally, we describe an example of R&D race of firms competing for market shares.
Consider four firms, A, B, C and D in the electronics industry. Suppose firms
A, B and C share the exact product portfolio of hardware products, while firm D
additionally produces some software. Generally, the more a firm invests in R&D,
the higher its market share is. This means in general, firms harm each other by
increasing their R&D activities. However, the R&D efforts of firm D have also
positive externalities on firms A, B and C and vice versa. So, the nature of the
competition between, say A and D, is different than the one of A and B. This leads
to the network given in Figure 1(c).

USA

Iran

Iraq

SSSR

(a) International relations

N,W

N,M

I,W

I,M

(b) Political lobbying

Firm B

Firm C

Firm A

Firm D

(c) R&D race

Figure 1: Representations of networks in the examples above. A link between two players
represents friendship. For the case on political lobbying, N,W denotes the group “native
woman” and other groups are analogously labeled.
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If we restrict our attention to all against all contests, our success function is equivalent
to the well-established success function characterized by Skaperdas (1996). For contests
between groups, our success function does not immediately link to the success function
axiomatized in Münster (2009) as it determines shares of individual players rather than
groups. However, the function obtained by summing up the shares of group members
belongs to the class axiomatized in Münster (2009). In a broader sense, our success
function is related to the probabilistic choice literature largely inspired by the seminal
contribution of Luce (1959).

We characterize our success function by six axioms. Exhaustivity and anonymity are
straightforward extensions of well-known axioms in the literature. The former requires
that the sum of shares of all players is equal to the total of the resources while the
latter implies that the shares do not depend on identities of players. We then have two
monotonicity axioms, specifying how shares change in response to increasing efforts and
to new friendships respectively. Monotonicity of efforts requires that the share of a player
strictly increases in its own effort. Monotonicity of relations demands that the share of a
player increases whenever the player becomes friend with a stronger player. We have two
independence axioms. Independence of efforts of commons requires that the relative share
of any two players is independent of the efforts of their common friends and common
enemies. Our final axiom, independence of relations of others, is concerned with how
relative shares change in response to a new friendship. The axiom imposes this change to
be the same across all pairs of networks which differ only by the new friendship.

Our framework is useful in connecting two major fields, namely contests and network
theory. Our model can in fact be used to study a specific network formation problem where
the total value of the network is fixed and the success function works as the allocation rule
for given efforts of players. We state this problem and show that under symmetric efforts
the unique pairwise stable network is the peace network, where all players are friends. In
the context of international relations, this result simply means that if countries had equal
power, the only stable outcome would be peace. Alternatively, our model can be used
to study strategic choice of efforts given a network of relations, with Nash equilibrium as
the solution concept. This would be the standard setting in contest theory if the network
was all against all. We provide an example where we consider all networks with equal
number of friends for each player, and show that aggregate equilibrium efforts decrease in
the number of friendships.

Section 2 reviews the literature. We introduce our model formally in Section 3. In Sec-
tion 4, we present our axioms and state our main characterization result. We discuss
possible applications of our framework in Section 5. Section 6 concludes. Proofs are in
Appendix.

2 Related literature

The contest is the workhorse model for representing conflict and competition over scarce
resources. It appears that Haavelmo (1954) was the first in formulating a contest model.
Since then, contest models have been applied in a variety of areas of economics and social
sciences, such as rent seeking (e.g., Tullock, 1975, Nitzan, 1994), industrial organization
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(e.g., Schmalensee, 1978, Fullerton and McAfee, 1999), incentives within organizations
(e.g., Rosen, 1986, Müller and Wärneryd, 2001) and armed conflict (e.g., Skaperdas, 1992,
Hirshleifer, 1995). See Konrad (2009) for an introduction to contest theory and its applic-
ations.

The axiomatic approach in contest theory started with the seminal work by Skaperdas
(1996), who defines a success function for all against all contests. This characterization
has been extended in several directions by relaxing some of the axioms (e.g., Clark and
Riis, 1998; Blavatskyy, 2010; see Jia et al., 2013, for a review), by generalizing to multi-
dimensional efforts of players (e.g., Rai and Sarin, 2009; Arbatskaya and Mialon, 2010),
or by allowing rankings as the outcome of a contest instead of a single winner (Vesperoni,
2013; Lu and Wang, 2014). While these contributions are exclusively on all against all
contests, Münster (2009) axiomatically characterizes a success function for contests where
the competition takes place between mutually exclusive groups of players, i.e., coalitions.
Our paper follows the axiomatic approach in contests, allowing players to compete in
every possible network of friendships and enmities. A recent paper by König et al. (2014)
focuses on networks where each pair of players can be in a friendly, neutral or antagonistic
relation. Like us, they propose a function to determine each player’s share of the prize.
Their approach is not axiomatic; instead they show that the equilibrium effort of a player
is related to an index of its centrality in the network under some restrictions; and they
perform an empirical analysis using data from the Second Congo War, which involves
many groups in a complex network of alliances and enmities.

Several papers in the broad subject of coalition formation in conflicts study contests
between groups. Following the seminal contribution of Olson (1965), these works fo-
cus on the collective action problem in groups, showing that the power of a group may
not increase in its size due to free-riding in the provision of collective effort (e.g., Esteban
and Ray, 2001; Esteban and Sákovics, 2003; Konrad and Kovenock, 2009). See Bloch
(2010) for a review on endogenous formation of groups in conflict. Although not strictly
related, there are contributions on the broader subject of conflict within networks. Franke
and Öztürk (2009) define a model where players are embedded in a network of bilateral
conflicts and each pair can choose to fight in each conflict by spending efforts or refrain
from fighting. In this setting, they characterize equilibrium efforts given specific types of
conflict networks. Hiller (2011) analyzes a model where there are as many local conflicts
as pairs of players and the win probabilities for each pair are determined by the number
of their friends. In this model, there is no endogenous choice of efforts and payoffs are
fully determined by the network of relations. Jackson and Nei (2014) define and analyze a
new solution concept, called war-stability, for networks where each player is in a friendly
or antagonistic relation with every other player. A necessary condition for war-stability
is that no coalition of players can successfully attack another coalition. Unlike us, they
associate a fixed effort to each player and their success function is deterministic. Goyal
and Vigier (2014) consider a two-player game where a designer chooses a network and
allocates specific efforts to defend each node, while an adversary allocates specific efforts
to attack each node after observing these. They find the optimal network structure for the
designer when the pair of efforts determines the probability of destruction of each node
via Tullock (1975) success function.
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3 Modeling networks in conflict

We consider a set of players N = {1, . . . , n}, where n ≥ 3. Players compete in a contest
for increasing their shares of a given prize whose value is normalized to 1. A player i ∈ N
is either in a friendly relation or in an antagonistic relation with every other player in N .
We write Fi ⊆ N for the set of friends of i including i itself. Relations between friends
(or enemies) are mutual, hence for any pair of players i, j ∈ N , we have i ∈ Fj if and
only if j ∈ Fi. We define a network as the profile of sets of friends F := (F1, ..., Fn) and
we denote by F the set of all networks.1 Each player i ∈ N is associated with an effort
xi > 0. We write x = (x1, ..., xn) ∈ X ⊆ Rn++ for the profile of efforts. For each player
i ∈ N , we define a success function as a mapping si : X × F → (0, 1), which maps any
effort profile and network pair (x, F ) into player i’s share si(x, F ).2

In a standard contest model, it is generally assumed that each player fights alone; so the
resulting network is the all against all network, where each player’s only friend is itself.
Hence, a player exerts effort to increase its share of the prize, and efforts of all other players
– of the enemies – work in the opposite direction. We need to go beyond standard contest
models to incorporate possible friendships in a conflict. Our model proposes a simple
environment to do so. As we discuss in Section 1, conflictual parties may form links with
each other whenever they find it beneficial. This does not necessarily mean that they are
no longer in competition; they may still pursue their self-interest in competition with each
other but their friendship may impose negative externalities on their enemies. In the next
section, we introduce some properties on success functions that are in line with the idea
of conflict and networks of friendships.

4 Characterization

In this section we present an axiomatic characterization of a particular success function
through six axioms. The first three axioms are direct extensions of classical axioms in
contest theory and they have similar justifications in our model. The latter three axioms
incorporate the concept of friendships in conflict. The first condition, exhaustivity, requires
that players always share the total of the prize.

Exhaustivity : For any F ∈ F and x ∈ X,
∑

i∈N si(x, F ) = 1.

Anonymity states that shares are determined by efforts and networks, but not by players’
identities. In short, it requires the contest to be a priori fair.

Anonymity : Let α be any permutation of N . For any F ∈ F and any x ∈ X, let
α(F ) = (Fα(1), ..., Fα(n)) and α(x) = (xα(1), ..., xα(n)). Then, si(x, F ) = sα(i)(α(x), α(F ))
for each i ∈ N .

1In standard network theory, a network or a graph g is defined as a list of unordered pairs of players
{i, j} which are linked. Here instead, we define a network as a profile of sets of friends for convenience.
We can easily link the two definitions in the following way: for each F ∈ J we define g such that {i, j} ∈ g
if and only if i ∈ Fj . Note that this definition leads to non-directed graphs.

2We exclude the cases where efforts are zero or shares take value 0 or 1. These are marginal cases, but
they lead to severe complications in our characterization which can only be dealt with ad hoc axioms. In
applications, whenever necessary, it seems natural to assume that si(x, F ) = 0 if xi = 0 and xj > 0 for
some j 6= i, so that resources are exclusively shared by players which actively participate.
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We now impose two monotonicity axioms; namely, monotonicity of efforts and mono-
tonicity of relations. Monotonicity of efforts imposes that the share of a player is strictly
increasing in its effort. Monotonicity of relations implies that being friends with a stronger
player increases the share.

Monotonicity of efforts: Let F ∈ F be any network with Fi 6= N for some player i ∈ N
and x ∈ X be any effort profile. Then, si(x

′, F ) > si(x, F ) for any x′ ∈ X with x′i > xi
and x′k = xk for all k 6= i.

Monotonicity of relations: Let F ∈ F be any network and x ∈ X be any effort profile such
that there is a pair i, j ∈ N with i /∈ Fj . Consider F ′ ∈ F such that i ∈ F ′j and F ′h = Fh
for all h /∈ {i, j}. Then, si(x, F

′) > si(x, F ) if xj > xi.

We finally introduce two axioms of independence. The first one, independence of efforts
of commons, imposes that the ratio of the shares of two players (their relative share) is
independent of the efforts of their common friends and common enemies. The intuition
is that the efforts of common friends and common enemies should similarly affect both
players’ shares; hence, they should not affect the relative share.

Independence of efforts of commons (IEC): Take a network F ∈ F and two effort profiles

x, x′ ∈ X. For any pair of players i, j ∈ N , si(x,F )
sj(x,F ) = si(x

′,F )
sj(x′,F ) if xk = x′k for all k ∈

(Fi ∪ Fj) \ (Fi ∩ Fj).

All axioms above except monotonicity of relations impose conditions on a success function
for a given network. How should we expect shares to change when networks change, i.e.,
when new friendships/enmities are made, besides an increase in the share upon making
a stronger friend? The second independence axiom, independence of relations of others,
focuses on the relative share of two players and identifies how the relative share should
change when one of these players makes a new friend or enemy. More specifically, the
axiom requires the rate of change of this relative share to remain the same across all pairs
of networks which differ only by the new friendship. So, it can also be seen as a consistency
requirement imposing the change that results from befriending a player to be consistent
across networks.

Independence of relations of others (IRO): Let F ∈ F be a network such that there are
two players i, j ∈ N with i ∈ Fj , and x ∈ X be any effort profile. Let F ′ ∈ F be the

network such that i /∈ F ′j and F ′h = Fh for all h /∈ {i, j}. Then,
(
si(x,F

′)
sh(x,F ′)

)/( si(x,F )
sh(x,F )

)
=(

si(x,G
′)

sh(x,G′)

)/( si(x,G)
sh(x,G)

)
for all h ∈ N \{i, j} and G,G′ ∈ F with i ∈ Gj , i /∈ G′j and Gk = G′k

for all k /∈ {i, j}.

Our axioms uniquely characterize a particular success function s∗i . For each network
F ∈ F , effort profile x ∈ X and player i ∈ N , this function is defined as

s∗i (x, F ) =

∏
h∈Fi

f(xh)∑
j∈N

∏
h∈Fj

f(xh)
, (1)

where f : R++ → (1,+∞) is a strictly increasing function.3

3When we restrict our attention to all against all network where each player is friend with only itself,
this success function reduces to the one introduced by Skaperdas (1996), except that in his framework f
is not necessarily greater than 1. Note that the restriction f > 1 guarantees that when a player becomes
friend with a stronger player its share always increases.
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We are ready for the characterization result.

Theorem 1 A success function si : X × F → (0, 1) satisfies exhaustivity, anonymity,
monotonicity of efforts, monotonicity of relations, IEC and IRO if and only if si(x, F ) =
s∗i (x, F ) for any i ∈ N , F ∈ F and x ∈ X.

This characterization is tight. We demonstrate the tightness of the axioms by means of
examples of success functions which satisfy all but one. Proofs are left to the reader.

1. For each i ∈ N , x ∈ X and F ∈ F , we define the success function s1i (x, F ) as

s1i (x, F ) =

∏
h∈Fi

f(xh)∑
j∈N

∏
h∈Fj

f(xh) + 1
,

where f : R++ → (1,+∞) is strictly increasing. This success function satisfies all
our axioms except exhaustivity.

2. For each i ∈ N , x ∈ X and F ∈ F , we define the success function s2i (x, F ) as

s2i (x, F ) =

∏
h∈Fi

fh(xh)∑
j∈N

∏
h∈Fj

fh(xh)
,

where fi : R++ → (1,+∞) is strictly increasing for each i ∈ N and fh 6= fj for some
h, j ∈ N . This success function fulfills all our axioms except anonymity.

3. For each i ∈ N , x ∈ X and F ∈ F , we define the success function s3i (x, F ) as

s3i (x, F ) =

∏
h∈Fi

f(xh)∑
j∈N

∏
h∈Fj

f(xh)
,

where f : R++ → (1,+∞) is strictly decreasing. Then, s3i satisfies all axioms except
monotonicity of efforts.

4. For each i ∈ N , x ∈ X and F ∈ F , we define the success function s4i (x, F ) as

s4i (x, F ) =

∏
h∈Fi

f(xh)∑
j∈N

∏
h∈Fj

f(xh)
,

where f : R++ → (0, 1) is strictly increasing. Then, s4i fulfills all axioms but mono-
tonicity of relations.

5. For each i ∈ N , x ∈ X and F ∈ F , consider the success function s5i (x, F ) which
takes the form

s5i (x, F ) =
f(xi)

2
∏
h∈Fi\{i} f(xh)∑

j∈N f(xj)2
∏
h∈Fj\{j} f(xh)

,

where f : R++ → (1,+∞) is a strictly increasing function. This success function
violates IEC, while it satisfies all other axioms.

6. For all F ∈ F , x ∈ X and i ∈ N , let us define the success function s6i (x, F ) as

s6i (x, F ) =



f(xi)
2∑

j∈N f(xj)2
if Fk = {k} for all k ∈ N ,

∏
h∈Fi

f(xh)∑
j∈N

∏
h∈Fj

f(xh)
otherwise,
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where f : R++ → (1,+∞) is a strictly increasing function. Then, s6i fulfills all
axioms but IRO.

Among these six functions, it is easy to see that s1i and s2i belong to the class of success
functions characterized by the five axioms they satisfy. On the other hand, s3i and s4i can
easily be fully characterized by further imposing the ‘opposite’ of the monotonicity axiom
that each fails to satisfy. Characterization of s5i and s6i requires introducing other axioms
and is not straightforward or necessarily desirable.

5 Applications

Due to its novelty and generality, our framework has potential for many applications. In
this section, we illustrate two examples. First, we consider games where players choose
relations taking efforts as given. Then, we study games where players choose efforts taking
relations as given.

5.1 Network formation problems

In these games, players take their efforts as given and simultaneously choose whether to
become friend with each other player or not. This setting belongs to the literature on
network formation. See Jackson (2005) for a review on network formation games. These
games are suitable for applications in international relations. Each player can represent a
country whose effort is a measure of its military capability. While military capability is a
stock, relations can change at convenience due to their ephemeral nature.

Our framework can be seen as a specific network formation problem where all networks
generate the same value which is 1, hence the value function is constant. The success
function works as the allocation rule. A common solution concept in this literature is
pairwise stability. To formally define pairwise stability, we introduce some notation. Given
a network F ∈ F and a pair of players i, j ∈ N with i ∈ Fj , let F − ij be the network
where players i and j become enemies while all other relations remain as in F . Similarly,
given a network F ∈ F and a pair of players i, j ∈ N with i /∈ Fj , let F + ij be the network
where players i and j become friends while all other relations remain as in F .

Definition 1 For a given effort profile x ∈ X, a network F ∈ F is pairwise stable if

(i) for all i, j ∈ N with i ∈ Fj, si(x, F ) > si(x, F − ij) and sj(x, F ) > sj(x, F − ij) and

(ii) for all i, j ∈ N with i /∈ Fj, if si(x, F ) ≤ si(x, F + ij) then sj(x, F ) ≥ sj(x, F + ij).

In a pairwise stable network no pair of friends can both be better off by breaking their
friendship and no pair of enemies can both be better off by becoming friends. We now
provide a result which characterizes the unique pairwise stable network when efforts are
symmetric.

Proposition 1 For any symmetric effort profile x ∈ X, the unique pairwise stable net-
work is the peace network where all players are friends.
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In the context of international relations, this setting allows countries to choose their rela-
tions taking their military capabilities as given. Our result then simply means that if all
countries had equal military capabilities, peace for all would be the only pairwise stable
network.

5.2 Contest games

In these games, players take the network of relations as given and simultaneously choose
their efforts. This is the standard setting in contest theory if we restrict our attention
to all against all network. This setting is suitable for applications to political lobbying
among others. For instance, in the political lobbying example illustrated in the introduc-
tion, relations between interest groups are based on origin and gender, so are unlikely or
impossible to change.

Following common assumptions in the literature, for any network F ∈ F and effort profile
x ∈ X, we define the payoff of player i ∈ N as πi(x, F ) = s∗i (x, F )−cxi, where c > 0 is the
marginal cost of effort. Each player i ∈ N chooses xi to maximize πi(x, F ) and we solve
for Nash equilibrium of the corresponding game. We state a simple result for a network
where all players have equal number of friends.

Proposition 2 Let f(xi) = 1 + xi. For any network F ∈ F where all players have the
same number of friends ϕ < n, there exists an equilibrium x∗ ∈ X such that for all i ∈ N
x∗i = (n− ϕ)/(n2c)− 1 if c < 1/n2.

This simple result shows that equilibrium efforts decrease in the number of friends ϕ. Let
us illustrate this proposition by the political lobbying example given in the introduction.
Consider the network given in Figure 1(b), where there are 4 players: an immigrant woman,
an immigrant man, a native woman, a native man. We take each player as an individual
rather than a group for simplicity. Every player has the same number of friends which is 3
including itself. If f(xi) = 1+xi and c < 1/n2, equilibrium efforts are 1/(16c)−1 as n = 4
and ϕ = 3. We now compare this result with another one for the alternative setting where
both women are native and both men are immigrants. This gives a different network,
where each player has 2 friends including itself (native women are friends with each other
and immigrant men are friends with each other). The corresponding equilibrium efforts
are 1/(8c)−1 by Proposition 2. Since 1/(16c)−1 < 1/(8c)−1 for any c < 1/n2, our success
function predicts more effort – more lobbying – in the second case, when ethnic origin and
gender are perfectly correlated leading to a more polarized set of players compared to the
first setting.

This is of course a very simple example but this analysis can be extended to more complex
networks to study, for instance, how the intensity of political lobbying in a country is
affected by the structure of the identities of citizens. This approach would be similar to
Esteban and Ray (1999) and Esteban et al. (2012), which show the positive link between
ethnic polarization and conflict from a theoretical and empirical view point respectively. In
our setting the identity of a citizen can be defined by the intersection of multiple categories
such as ethnicity, gender, age, education, wealth, etc. Then, Esteban et al. (2012) can be
extended to this multivariate setting by measuring the degree of correlation across these
categories via the multivariate inequality index in Tsui (1995, 1999) or the multivariate
polarization index in Srisuma and Vesperoni (2015).
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6 Conclusion

We define and axiomatically characterize a success function for contests where each pair of
players can be in a friendly or antagonistic relation, and all these pairwise relations form
a network. For all against all contests, our success function is equivalent to the function
characterized in Skaperdas (1996). For contests between groups, the aggregate share of
group members always belongs to the class axiomatized in Münster (2009). Our success
function treats every friend equally, however, it can easily be extended to the setting where
each friendship has a weight. Another possible extension is to consider networks where
relations between players are not necessarily mutual or equally weighted. We leave these
extensions for future research.

Our framework allows to study strategic interaction between parties in conflict who are
connected by a complex network of relations. Among many other environments, we com-
monly see such complex networks in international relations between countries, in industrial
organization between competing firms and in political lobbying between interest groups.
We have illustrated two possible applications of our model. We show in Section 5.1 that
under symmetric efforts the unique pairwise stable network is the peace network when
our success function works as the allocation rule. A very natural question that arises is
whether this result persists under asymmetric effort profiles. We know that this result
persists only for some profiles, and we leave characterization of such profiles for future
research. Similarly, it is interesting to extend the analysis in Section 5.2 to any type of
networks, or to study an environment where players choose their efforts and friendships
simultaneously.

Our success function has potential for empirical applications as well. For instance, our
model can be used to test for network effects by maximum likelihood or related methods.
We refer to Jia et al. (2013) for a review of empirical issues in the estimation of success
functions. The success function can also be used as an index of power adjusted for the
network of relations. In the context of international relations, a particularly suited col-
lection of datasets is presented by The Correlates of War Project, which spans for about
two centuries and provides material for case studies as well as econometric analysis. In
this context, the effort of a country can be estimated by its National Material Capabilities
(see Singer et al., 1972) while its set of friends can be estimated by its Formal Alliances
(see Gibler, 2009).

Appendix

Proof of Theorem 1

We leave to the reader to verify that (1) satisfies the axioms given in the theorem. To show
that the converse holds, for each player i ∈ N , we take a success function si : X×F → (0, 1)
satisfying the axioms. We want to show that for any i ∈ N , x ∈ X and F ∈ F , (∗)
si(x, F ) = s∗i (x, F ).

Let F ∈ F be the network for which Fi = N for each player i ∈ N . Take any effort profile
x ∈ X. To show that (∗) is true, it suffices to show that (∗∗) si(x, F ) = 1/n. Take any pair
i, j ∈ N . Take a permutation α such that α(i) = j, α(j) = i, α(k) = k for all k /∈ {i, j}.
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By anonymity, si(x, F ) = sj(α(x), F ) and sj(x, F ) = si(α(x), F ). Note that α(F ) = F .

Moreover, by IEC si(x,F )
sj(x,F ) = si(α(x),F )

sj(α(x),F ) which then is equal to
sj(x,F )
si(x,F ) . This implies that

si(x, F ) = sj(x, F ). Together with exhaustivity this implies (∗∗).

To proceed in the proof, we now define a class of success functions slightly broader than
(1). As an intermediate result we will argue that the axioms require the success function
to belong to this class. For any F ∈ F , x ∈ X and i ∈ N , we define

ŝi(x, F ) =

∏
h∈Fi

f(xh)∑
j∈N

∏
h∈Fj

f(xh)
(2)

where f : R++ → R++. Note that (2) differs from (1) only by f not necessarily being
strictly increasing and strictly greater than 1. Moreover it is easy to verify that (2) satisfies
all our axioms except monotonicity of efforts and monotonicity of relations. Hence, (2)
defines a class of success functions which includes (1).

To prove our intermediate result, we proceed by induction. First, let F ∈ F be a network
with at least one pair of players which are enemies, i.e., Fi 6= N for at least one player i.
Let x ∈ X be an effort profile. It is easy to show that there exists a sequence of networks
F 0, . . . , Fm with m ≥ 1 such that for t ∈ {0, . . . ,m − 1} (i) there is a pair of players
i, j ∈ N such that i ∈ F tj and i /∈ F t+1

j , (ii) for all k /∈ {i, j}, F tk = F t+1
k and (iii) F 0

i = N
for all i ∈ N and Fm = F . Note that there are (m − 1)! such sequences. We take any
such sequence and we want to prove the following claim:

Claim: For each i ∈ N , si(x, F
t) = ŝi(x, F

t) =⇒ si(x, F
t+1) = ŝi(x, F

t+1).

Let sk(x, F
t) = ŝk(x, F

t) for all k ∈ N . Without loss of generality, we take two players
i, j ∈ N with i ∈ F tj and we define the network F t+1 as the network where i /∈ F t+1

j and

F t+1
h = F th for all h /∈ {i, j}. Let h be any player in N\{i, j}. By IEC, si(x,F

t)
sh(x,F t) depends

only on the efforts of the uncommon friends of i and h in F t. Similarly, si(x,F
t+1)

sh(x,F t+1)
depends

only on the efforts of their uncommon friends in F t+1. Hence, there exists a real valued
function γF

t

i,j,h such that

γF
t

i,j,h(xU ) =

(
si(x, F

t+1)

sh(x, F t+1)

)/( si(x, F t)
sh(x, F t)

)
(3)

where xU is the profile of efforts of players l ∈ U := [(F ti ∪ F th) \ (F ti ∩ F th)] ∪ [(F t+1
i ∪

F t+1
h ) \ (F t+1

i ∩ F t+1
h )]. By IRO, for any pair of networks G,G′ ∈ F such that i ∈ Gj and

i /∈ G′j and G′k = Gk for all k /∈ {i, j},

γF
t

i,j,h(xU ) =

(
si(x,G

′)

sh(x,G′)

)/( si(x,G)

sh(x,G)

)
. (4)

By IEC the right hand side of (4) is exclusively a function of xU ′ , where U ′ := [(Gi∪Gh)\
(Gi ∩ Gh)] ∪ [(G′i ∪ G′h) \ (G′i ∩ G′h)]. Note that j ∈ U and j ∈ U ′ by construction. As

there is no restriction on G except that i ∈ Gj , the function γF
t

i,j,h does not depend on the

whole network F t but only on the relation between i, j. Moreover, as (4) must hold for
G such that U ′ = {j}, the function γF

t

i,j,h is constant in all efforts except xj . A similar set

of expressions can be written for the relative share of players j and h in networks F t and

11



F t+1. Then, we can define the functions gi,j,h : R++ → R++ and gj,i,h : R++ → R++ so
that

gi,j,h(xj) =

(
si(x, F

t+1)

sh(x, F t+1)

)/( si(x, F t)
sh(x, F t)

)
, (5)

gj,i,h(xi) =

(
sj(x, F

t+1)

sh(x, F t+1)

)/( sj(x, F t)
sh(x, F t)

)
. (6)

For n = 3, we can immediately write gi,j,h(xj) = gi,j(xj) and gj,i,h(xi) = gj,i(xi) for the
unique player h /∈ {i, j}. Let n ≥ 4, so that there are at least two players h, k ∈ N \ {i, j}.
If we write (5) for h, k ∈ N \ {i, j} and we take the ratio of the two expressions we
obtain

gi,j,k(xj)

gi,j,h(xj)
=

(
sh(x, F t+1)

sk(x, F t+1)

)/(sh(x, F t)

sk(x, F t)

)
.

Similarly if we write (6) for h, k ∈ N \ {i, j} we obtain

gj,i,k(xi)

gj,i,h(xi)
=

(
sh(x, F t+1)

sk(x, F t+1)

)/(sh(x, F t)

sk(x, F t)

)
.

Let G,G′ ∈ F be such that i ∈ Gj and i /∈ G′j and G′l = Gl for all l /∈ {i, j}. Moreover
let Gh = Gk. Consider the permutation β such that β(k) = h, β(h) = k, β(l) = l
for all l /∈ {h, k}. By anonymity sh(x,G) = sk(β(x), β(G)). Note that β(G) = G,
therefore sh(x,G) = sk(β(x), G). As Gh = Gk implies G′h = G′k, by anonymity we must

also have sh(x,G′) = sk(β(x), G′). Moreover, by IEC sh(x,G)
sk(x,G) = sh(β(x),G)

sk(β(x),G) which then is

equal to sk(x,G)
sh(x,G) . This implies that sh(x,G) = sk(x,G). Similarly, by IEC we also have

sh(x,G′) = sk(x,G
′). It follows by IRO that

1 =

(
sh(x, F t+1)

sk(x, F t+1)

)/(sh(x, F t)

sk(x, F t)

)
, (7)

hence gi,j,h(xj) does not depend on the identity of h as long as h /∈ {i, j}. Then, we
can write gi,j,h(xj) = gi,j(xj) and gj,i,h(xi) = gj,i(xi) for each h ∈ N \ {i, j} also when
n ≥ 4.

Now, let G′ ∈ F be the network such that G′k = {k} for all k ∈ N . Consider the
network G ∈ F which differs from G′ only by i, j being friends, so i ∈ Gj and Gk = G′k
for all k /∈ {i, j}. Consider the permutation α defined above. By anonymity si(x,G) =
sj(α(x), α(G)). Note that α(G) = G, therefore si(x,G) = sj(α(x), G). Then, as by IEC
si(x,G)
sj(x,G) is constant in x, we must have si(x,G) = sj(x,G). Using IRO, we can write(

si(x,G
′)

sj(x,G′)

)/( si(x,G)

sj(x,G)

)
=
si(x,G

′)

sj(x,G′)
=
gi,j(xj)

gj,i(xi)
. (8)

Since α(G′) = G′, by anonymity gi,j = gj,i. Note that any permutation of players besides α
also leads to G′. Then, anonymity implies that gi,j and gj,i do not depend on the identities
of i and j, hence we can write gi,j = gj,i = g for all i, j ∈ N .

Let si(x, F
t) = ŝi(x, F

t) for all i ∈ N , x ∈ X and some f : R++ → R++. By (5) we can
write

g(xj) =

(
si(x, F

t+1)

sh(x, F t+1)

)/( ŝi(x, F t)
ŝh(x, F t)

)
,

12



therefore
si(x, F

t+1)

sh(x, F t+1)
=

∏
l∈F t

i
f(xl)g(xj)∏

l∈F t
h
f(xl)

. (9)

To show that the Claim holds, we have to show that g = 1/f . Suppose for a contradiction,
this is not the case. Consider the specific case where F̂ t ∈ F be the network where i ∈ F̂ tj
and F̂ tk = {k} for all k ∈ N \ {i, j}. Let F̂ t+1 be defined accordingly. If we rewrite (9) for
this pair of networks, we obtain

si(x, F̂
t+1)

sh(x, F̂ t+1)
=
f(xi)f(xj)g(xj)

f(xh)
, (10)

which equals g(xh)
g(xi)

by (8). Then, we can write

f(xi)f(xj)g(xj)

f(xh)
=
g(xh)

g(xi)
. (11)

As the right hand side is constant in xj , we must have f(xj)g(xj) = c where c is a strictly
positive constant. Plugging c/f for g in (11) and rearranging, we have

f(xi)f(xj)

f(xh)
=

c/f(xh)

(c/f(xi))(c/f(xj))
, (12)

which implies that c = 1, hence a contradiction. Therefore g = 1/f and we can rewrite
(9) as

si(x, F
t+1)

sh(x, F t+1)
=

∏
l∈F t+1

i
f(xl)∏

l∈F t+1
h

f(xl)
. (13)

By (8) and (13), for any i, j ∈ N we have

si(x, F
t+1)

sj(x, F t+1)
=

∏
l∈F t+1

i
f(xl)∏

l∈F t+1
j

f(xl)
,

hence all relative shares are determined. For any j ∈ N , by exhaustivity,

1

sj(x, F t+1)
=
∑
i∈N

si(x, F
t+1)

sj(x, F t+1)
=
∑
i∈N

(∏
l∈F t+1

i
f(xl)∏

l∈F t+1
j

f(xl)

)
=

∑
i∈N

∏
l∈F t+1

i
f(xl)∏

l∈F t+1
j

f(xl)

therefore sj(x, F
t+1) = ŝj(x, F

t+1). Then, we have shown that the Claim holds.

As (2) satisfies all axioms except monotonicity of efforts and monotonicity of relations,
it can be proven that si(x, F

0) = ŝi(x, F
0) for any positive function f . Then, for any

network F ∈ F with at least one pair of players which are enemies, any effort profile
x ∈ X, si(x, F ) = ŝi(x, F ) for any i ∈ N by induction.

Given this, to prove (∗) for such networks and effort profiles it is sufficient to show that
the function f must always be strictly increasing and strictly greater than 1. Consider
a network F ∈ F such that there is a pair i, j ∈ N with i /∈ Fj . As i /∈ Fj , we have
si(x, F ) = ŝi(x, F ) and sj(x, F ) = ŝj(x, F ) for any x ∈ X. Take any x, x′ ∈ X such that
x′i > xi and x′h = xh for h 6= i. By monotonicity of efforts si(x

′, F ) > si(x, F ). Then,

13



it is easy to verify that f must be strictly increasing. To show that f > 1, consider the
network F ′ with i /∈ F ′j and F ′k = Fk for all k /∈ {i, j}. Without loss of generality, let
xj > xi. Then, si(x, F ) > si(x, F

′), which implies that f > 1. So, we achieve the desired
result (∗).

�

Proof of Proposition 1

Take any pair of players i, j ∈ N and a network F ∈ F where i, j are friends. Let F ′

be the network in F where i, j are enemies and all other relations are the same as in F .
For any effort profile x ∈ X, one can show that we have si(x, F ) > si(x, F

′) if and only
if

f(xi)− f(xj) < (f(xj)− 1)

 ∑
h∈N\{i,j}

∏
k∈Fh

f(xk)

/∏
h∈Fj

f(xh)

. (14)

Suppose the effort profile x is symmetric, i.e., x1 = . . . = xn > 0. The LHS of (14) is
always 0. Conversely the RHS is always positive. Then, by (14), any network F ′ where
some players i, j ∈ N are enemies is not pairwise stable, as they prefer to be friends. It
follows that the only pairwise stable network is the one where all players are friends.

�

Proof of Proposition 2

Take any F ∈ F such that ϕ < n. It is easy to verify that, if f(xi) = 1 + xi, the second
derivative of πi(x, F ) with respect to xi is negative for any x ∈ X and i ∈ N . Then, a
solution x∗ of the system of equations given by the n first order conditions

si(x, F )
∑
j /∈Fi

sj(x, F ) = cf(xi)/f
′(xi)

of all players i ∈ N defines a Nash equilibrium. Suppose that a solution satisfies x∗i = x∗j
for any i, j ∈ N . As |Fi| = ϕ for any i ∈ N , we have si(x

∗, F ) = 1/n for all i ∈ N and
each first order condition becomes (n− ϕ)/n2 = cf(x∗i )/f

′(x∗i ). As f(xi) = 1 + xi, we
have x∗i = (n− ϕ)/(n2c) − 1. Note that x∗i > 0 for all ϕ < n if and only if c ∈ (0, 1/n2).
Then, x∗ is an equilibrium if and only if c ∈ (0, 1/n2).

�

References

Arbatskaya, M. and H. M. Mialon, “Multi-activity contests,” Economic Theory, 2010,
43 (1), 23–43.

Blavatskyy, P.R., “Contest success function with the possibility of a draw: axiomatiza-
tion,” Journal of Mathematical Economics, 2010, 46 (2), 267–276.

Bloch, F., “Endogenous formation of alliances in conflicts,” Working paper, 2010.

Clark, D.J. and C. Riis, “Contest success functions: an extension,” Economic Theory,
1998, 11 (1), 201–204.

14



Esteban, J. and D. Ray, “Conflict and distribution,” Journal of Economic Theory,
1999, 87 (2), 379–415.

and , “Collective action and the group size paradox,” American Political Science
Review, 2001, 95 (3).
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